Categories: Other

Warning Signs of a Failing Servo Motor

Whether we want to admit it or not, our entire world economy hinges on the functioning of servo motors. They remain integral components in many industrial applications, from robotics to CNC machinery. Their reliability and precision make them essential for ensuring smooth operation in automated systems. However, like anything else,servo motors can develop issues over time. This tends to lead to catastrophic failure if not addressed. Identifying early warning signs of a failing servo motor can prevent costly downtime and ensure the longevity of your equipment. Below are some of the key signs that a servo motor is about to go bad.


Signs of a Failing Servo Motor

Unusual Noises

One of the most common early indicators of a problem is abnormal noise coming from the servo motor. Servo motors typically operate quietly, but as they wear out, components may loosen or degrade, causing:

  • Grinding or clicking sounds
  • High-pitched squealing
  • Loud vibrations

These noises can be caused by worn bearings, misaligned gears, or internal mechanical friction. If you hear unusual sounds, it’s critical to investigate and address the underlying issue before it escalates.

Overheating

Servo motors are designed to dissipate heat effectively, but if a motor is consistently running hotter than normal, it could be an early sign of trouble. Overheating can stem from:

  • Poor ventilation or cooling
  • Overloading or running the motor beyond its rated capacity
  • Worn-out bearings or brushes causing friction

If you notice the motor surface temperature exceeding the manufacturer’s recommended levels, or if the motor’s thermal protection trips frequently, it’s time to assess the system for possible issues.



Erratic Movement

Servo motors are known for their precision. If you notice that the motor is no longer operating smoothly, it could indicate impending failure. Symptoms include:

  • Jerky or erratic movements
  • Delays in response time
  • Inconsistent speed or torque output
  • Inaccurate positioning or tracking

These issues could be due to encoder or feedback problems, damaged internal gears, or failing control circuitry. A motor that cannot maintain steady operation should be inspected immediately.

Increased Power Movement

A servo motor nearing failure may begin to draw more power than usual to maintain its performance. An increase in energy consumption could result from:

  • Excessive friction in the bearings or mechanical parts
  • Electrical short circuits or insulation breakdown
  • Worn-out windings requiring higher currents to produce the same output

Monitoring the power consumption of your motor can give you early insight into its health. A sudden spike in current usage often signals internal degradation.

Vibrations and Excessive Play

Vibrations are a telltale sign of wear in mechanical systems. A failing servo motor might exhibit:

  • Excessive vibrations or wobbling during operation
  • Loose or imprecise shaft movement
  • Increased backlash in the gearbox

These issues are typically caused by worn-out bearings, misaligned shafts, or damaged couplings. In some cases, vibrations can also result from imbalances in the rotor. Ignoring these warning signs can lead to more serious mechanical failures down the line.

Encoder Malfunctions

The encoder plays a critical role in providing feedback on the position, speed, and direction of the motor. If the encoder starts to malfunction, you may notice:

  • Loss of feedback signals
  • Incorrect positioning of the motor
  • Communication errors between the motor and controller

Dirty or misaligned encoders, damaged cables, or electronic component failure can all lead to encoder-related issues. Regularly inspecting and cleaning the encoder can help mitigate these risks.

Frequent Power Tripping

Servo motors are typically equipped with protective features such as thermal cutoffs, overload protection, or circuit breakers. If these devices trip more frequently than usual, it’s an indication that something is wrong with the motor. Common causes include:

  • Overheating or excessive current draw
  • Mechanical obstructions causing overloads
  • Short circuits or electrical insulation failure

Frequent tripping should never be ignored, as it indicates the motor is under stress and could fail soon.

Wear and Tear

Physical inspection of the motor can also reveal signs of impending failure. Look for:

  • Damaged or worn-out seals or housings
  • Oil or grease leaks around the bearings or seals
  • Corroded or frayed wires
  • Signs of rust or corrosion on metal components

While external wear might not always correlate directly to internal damage, it’s a good practice to maintain the motor’s appearance and prevent environmental factors from accelerating its deterioration.

Internals of a well worn servo motor are a telling indicators of a failing servo motor.

Software and Control System Errors

Servo motors often interact with control systems via software or programmable logic controllers (PLCs). If you start noticing frequent errors, alarms, or faults in the control system related to the servo motor, it could be a sign of:

  • Communication issues between the motor and the controller
  • Malfunctioning or outdated control software
  • Feedback loop problems due to encoder failure

Diagnosing these errors quickly can help you address the root cause before it leads to further damage to the motor or system.

Motor Stalling

If the servo motor stalls or fails to start under load, it could be an indication that the motor is struggling to produce the required torque. Potential causes include:

  • Mechanical binding or obstructions in the system
  • Electrical issues such as worn windings or damaged brushes
  • Degraded motor insulation or faulty wiring

A stalling motor is a serious issue that should be addressed immediately to avoid a complete motor burnout.


Conclusion

A failing servo motor can be costly, both in terms of downtime and replacement costs. By recognizing the early warning signs such as unusual noises, erratic movement, overheating, and increased power consumption, you can address minor issues before they escalate. Regular maintenance, monitoring, and timely inspections will help ensure the long-term performance and reliability of your servo motors. When in doubt, consult a professional technician to evaluate and service your motor, ensuring it continues to operate smoothly and efficiently.

In addition to recognizing a failing servo motor, taking steps to maintain and prolong the life of your servo motor is also important. Luckily, we have an article explaining things you can do to prolong the longevity of your servo motor. Feel free to read about it here.


Is Your Servo Motor Breaking?

If you have a servo motor going bad, our team of experts are ready to help you ensure that your business is back up and running in no time. Our customer service team can be reached by email: sales@mroelectric.com or by phone: (800) 691-8511.



Ken Cheng

Share
Published by
Ken Cheng

Recent Posts

Legal and Safety Requirements Regarding Arc Flashes

Arc flash incidents are among the most dangerous hazards in the electrical industry, posing serious…

4 days ago

Understanding an Arc Flash

Understanding an Arc Flash An arc flash stand as one of the most dangerous electrical…

3 weeks ago

Distributed Control System (DCS) Explained

A Distributed Control System (DCS) is a type of automated industrial control system (ICS) used…

3 weeks ago

The Effects of Dirty Power on Electronics

The Effects of Dirty Power In today's tech-driven world, many of our most valuable devices…

1 month ago

The Most Popular U.S. College Mascots

The game is almost over, and your team is losing. You can feel the crowd’s…

2 months ago

Most Common Used PLC’s in Industrialized Countries

Programmable Logic Controllers (PLCs) plays a critical role in controlling machinery and processes in various…

2 months ago