The Most Popular U.S. College Mascots

The game is almost over, and your team is losing. You can feel the crowd’s energy dropping as you look around at sad faces painted with team colors. But just as you’re about to give up hope, someone comes out to pump up the crowd and save the day: the mascot.

For any team, mascots are crucial for boosting morale and keeping fans engaged. They’re famous symbols of team spirit that appear on merchandise, inspire game-day outfits, and become iconic figures with big personalities. It’s easy to see how beloved mascots are while they’re on the field, but many do just as much off the field to keep fans entertained. In this blog, we’ll explore which college mascots are the most popular based on their social media followings. Read on to see if your favorites made the cut!

College Mascots with the Highest Social Media Following

A graphic displaying college mascots with the highest social media following.

So who takes the cake, Biff, the Michigan Wolverine or Brutus Buckeye? The Duke Blue Devil or Rameses the Tar Heel? We turned to X, Instagram, and TikTok to analyze followers of mascots at over 70 major universities across the U.S. So, lay the debates to rest because we crunched the numbers. 

Fans of Brigham Young University or the University of Oregon are in luck thanks to Cosmo the Cougar and The Oregon Duck. These mascots are leagues ahead of their social media competition, and we can see why. They both keep up with trends and maintain consistent posting schedules—and people love to watch Cosmo dance. 

Although The Ohio State University’s Brutus Buckeye is in third place, the contest isn’t very close. The Duck’s combined follower count is almost double that of Brutus Buckeye’s, while Cosmo’s count is over triple.

The three highest-followed mascots can attribute much of their success to TikTok. Fourth-ranked Mike the Tiger of Louisiana State University, on the other hand, is best known for his purple and gold-themed Instagram page. Mike is joined by other Instagrammers like Aubie (Auburn University), Reveille (Texas A&M University), Jonathan the Husky (University of Connecticut), and Big Al (University of Alabama). These mascots are in the majority, as Instagram is the biggest platform for most of the mascots we researched.

While most mascots tend to do their best on TikTok and Instagram, others thrive on X. That’s where Bucky Badger, Golden Gopher, and Cocky all boast their biggest platforms. Even so, Brutus Buckeye has the most X followers of any college mascot, followed closely by The Oregon Duck.

Conferences with the Highest Social Media Following

A graphic displaying college conferences with the highest social media following.

Next, we wanted to see how the conferences stack up to each other, all mascots considered. 

The Big 12 Conference might have the highest social media following, but it only has one mascot in the 20 highest-followed list. That just goes to show the sheer social media power of the most popular college mascot overall, Cosmo the Cougar.

The Big Ten Conference and the SEC have the next highest social media followings. As the oldest NCAA Division I conferences today, it’s no surprise that together they contain 16 of the 20 highest-followed mascots.

Following in fourth place is the ACC, with Sebastian the Ibis leading the conference in social media followers. Hailing from the University of Miami, Sebastian holds the ACC’s only spot on the top 20 list. Similarly, UConn’s Jonathan the Husky is the only mascot from an NCAA football-independent school to appear on the list.

Representing Washington State University, Butch T. Cougar has the most followers in the Pac-12 Conference. He may not have enough followers to make it on the top 20 list, but he has enough to beat Oregon State University’s Benny Beaver, the only other mascot in the conference.

Closing Thoughts

So there you have it! Whether your mascot made our list or not, we can all agree that game days wouldn’t be the same without them. 

College mascots are an essential part of any team, bringing fans together both on the field and online. At MRO Electric, we understand the importance of a solid team. Without a collective effort, we wouldn’t be able to deliver our electric supplies on time and intact to keep your operations running smoothly. Contact us today to see how our team can help you find the right industrial automation supplies!

Methodology

Our analysis of the most popular collegiate mascots includes schools in the Power 5 conferences, as well as FBS independent schools. We analyzed each of the primary mascots’ accounts on Instagram, TikTok, and X in July of 2024. Secondary mascots or school spirit accounts that feature the mascot were not included in this analysis.

End of Year Maintenance

As the year comes to a close, it’s the perfect time for industrial facilities to perform essential maintenance on their automation systems. Proper end-of-year maintenance ensures that your equipment runs efficiently, reduces downtime, and prepares your facility for the challenges of the upcoming year. For the end of year we’ve created a five-step guide to help you effectively manage your industrial automation maintenance.

Read more: End of Year Maintenance

Evaluate System Performance

Start by reviewing the performance of your automation systems over the past year. Analyze key metrics such as production output, energy consumption, and system downtime. Look for patterns in system inefficiencies or recurring issues. Collaborate with operators and technicians to gather feedback on areas needing improvement. This evaluation not only helps pinpoint weaknesses but also provides valuable insights for optimizing operations moving forward.

Inspect and Clean Equipment

Obstructions such as dirt, dust, and debris can accumulate in automation systems. This causes wear and tear and even operational failures. Perform a thorough inspection of all components, including sensors, actuators, conveyors, and control panels. Clean sensitive equipment using appropriate tools and materials to prevent damage. Pay special attention to electrical connections and cooling systems to ensure they remain in good condition and free from obstructions.

Update Software and Firmware

Outdated software and firmware can lead to inefficiencies and vulnerabilities in your automation systems. Check for updates from equipment manufacturers and install them as needed. Updates often include bug fixes, security enhancements, and performance improvements. Ensure that all updates are compatible with your existing hardware and test them in a controlled environment before applying them to critical systems.

Replace Worn Components

Wear and tear is inevitable in industrial automation. Inspect all mechanical and electrical components for signs of degradation, such as frayed wires, corroded connectors, or worn-out belts and gears. Replace these parts proactively to avoid unexpected failures that could lead to costly downtime. Keep an inventory of critical spare parts to facilitate quick replacements when needed.

Plan Future Upgrades

Use this maintenance period to plan for system upgrades or expansions. Evaluate new technologies and trends in industrial automation that could improve your operations. Consider implementing predictive maintenance tools or integrating IoT solutions for better system monitoring and control. Budgeting for these upgrades now can help ensure a seamless transition in the future.

Conclusion

By taking the time to conduct thorough end-of-year maintenance on your industrial automation systems, you set the stage for a more productive and trouble-free year ahead. Regular maintenance not only extends the lifespan of your equipment but also enhances overall operational efficiency, saving your facility time and money in the long run.


In Need of Parts?

If you find yourself needing a new motor or servo amplifier after completing your year end maintenance reach out to us! Our team of experts can make sure you have the right equipment needed to make sure your 2025 starts off without a hitch!

Beginner’s Guide to Programming an Allen-Bradley PLC

Allen-Bradley Programmable Logic Controllers (or PLC) remain widely used in industrial automation. Programming their PLCs opens a multitude of opportunities for those willing to learn how to do so. Learning to program them requires understanding both the hardware and the programming software, typically Rockwell Automation’s RSLogix 500 or Studio 5000 (for ControlLogix or CompactLogix PLCs).

Read more: Beginner’s Guide to Programming an Allen-Bradley PLC

Understanding the PLC

The first step to programming a PLC is understanding what the heck a PLC even is. This article gives a more in-depth explanation into understanding PLC’s. The basic rundown is that a PLC is basically a computer used to control machines and processes. It accomplishes this using inputs like sensors, and outputs such as actuators. While these systems use a variety of components there are definitely fundamental ones that are universally found across multiple systems. The components are crucial to system operation.

PLC System Components

  1. Processor/CPU: Executes the program logic.
  2. I/O Modules: Interface for sensors and actuators.
  3. Power Supply: Powers the PLC.
  4. Communication Port: Connects to programming devices or networks.

Installing the Required Software

  1. Get the Software:
    • For MicroLogix series, use RSLogix 500.
    • For CompactLogix/ControlLogix, use Studio 5000 Logix Designer.
  2. Install RSLinx:
    RSLinx is the communication software needed to connect your PC to the PLC.
  3. Licensing: Make sure you have a valid software license. If you need the software package for a one off job, Allen-Bradly offers free trial versions for many of their software packages.

Connecting the PLC

  1. Hardware Setup:
    • Connect your PC to the PLC using USB, Ethernet, or Serial (depending on the model).
    • Ensure proper power is supplied to the PLC.
  2. Communication Setup in RSLinx:
    • Open RSLinx and configure a communication driver (e.g., Ethernet/IP, RS232).
    • Test communication to ensure the PC recognizes the PLC.

Create a New Project

  1. Open the Programming Software:
    • In RSLogix 500 or Studio 5000, create a new project.
  2. Select Model:
    • Choose the correct processor type (e.g., MicroLogix 1400, CompactLogix L33ER).
  3. Configure I/O:
    • Define the input and output modules in the program, ensuring they match the physical hardware.

Learn Ladder Logic

  1. What is Ladder Logic?
    Ladder Logic is the primary programming language for PLCs. It mimics electrical relay logic with “rungs.”
  2. Basic Elements of Ladder Logic:
    • Inputs: Represented by normally open (NO) or normally closed (NC) contacts.
    • Outputs: Represented by coils or actuators.
    • Timers/Counters: For delay or counting applications.
    • Branching: For parallel operations.

Write an Easy Program

Once you go over the basics of PLC programming, take a crack and writing your own program! One example of a simple programming project is creating a function that toggles a motor START and STOP.


Conclusion

Understanding how to program Allen-Bradley PLCs seems intimidating. However, the opportunities and advancements that come with learning how to program PLCs makes the struggle worth it.


Having PLC Issues?

Our team of qualified experts are ready to assist you with your PLC needs. Reach out today either by phone: (800) 691-8511 or email: sales@mroelectric.com.

A group of original OREO chocolate sandwich cookies splashing into milk.

Every State’s Favorite OREO

Whether you’re loyal to the classic, double stuf, or thin OREOs, the addicting cookies always have a place in America’s kitchen cabinet. Even if the timeless original recipe does not jive with your taste buds, the brand has experimented with over 100 versions of OREOs. With so many to choose from, we set out to pull apart the country’s favorites.  

Sometimes, OREO alters the original cookie’s wafer-to-creme ratio. Other times, they release a bold new flavor ranging from red velvet to “space dunk.” Altogether, we analyzed over 100 OREO variations using Google Trends search data from the last year to discover the most-searched style and flavor in each state in the U.S. Read on to find out which OREOs are on your neighbors’ shopping lists! 

A map of the United States with OREO icons assigned to each state to depict each state’s favorite OREO style.

Beginning by focusing on OREO styles, most of the country is content with the original cookie design. The evenly distributed cookie-to-creme ratio that pairs a satisfying crunch with a soft middle of the Original OREO is the most popular OREO style in 26 states. While the original OREO won a simple majority of the U.S., the rest of the country divided their support into six groups.

Following the original style, Americans love The Most Stuf OREO—you guessed it—the most. This maximalist take on the classic cookie includes about four times more stuf than the original does. Fittingly, this OREO style is the most popular in the Lone Star State, proving that everything truly is bigger and better in Texas. Nine total states prefer this style, officially making it the most favored OREO style variation. 

Golden OREOs round out the top three, solidifying that OREO’s choice to alter their chocolate cookie wafers was a solid idea. As one of the flagship OREO styles, Golden OREOs have a fanbase stronghold in the middle of the country made up of Arkansas, Kansas, and Oklahoma. This style is the most popular in six states in total.

A map of the United States with OREO icons assigned to each state to depict each state’s favorite OREO flavor.

Shifting from OREO styles to flavors, the dominant Original OREO takes the top spot as the most searched flavor in 12 states. Even as OREO continues to innovate, the classic flavor holds its own, a testament to its endless appeal. But while the Original OREO might be the overall victor, the rest of the country has plenty of adventurous preferences.

Coming in hot and winning seven states, the Tiramisu OREO brings a touch of sophistication to the table. With layers of coffee-flavored creme reminiscent of the beloved Italian dessert, this flavor finds fans in states like Colorado and Florida. Also leading in seven states, the Birthday Cake OREO is all about celebration. From Georgia to Wisconsin, this sprinkle-packed, frosting-flavored cookie is perfect for anyone looking to make snack time feel like a party. Both of these flavors are the second-most popular behind the Original OREO, making them the most popular flavor variations.

To highlight a few more of the top flavors, five states opt for the Space Dunk OREOs, exuberantly described on the packaging as OREOs with “five galactic designs and cosmic creme with popping candy.” On a completely different note, Peanut Butter OREOs find a nutty fanbase in Alabama, Rhode Island, and New Hampshire, proving that chocolate and peanut butter are always a winning duo. The playful Sour Patch Kids OREO stands out in Indiana, Mississippi, and Oregon, embracing snackers who love a little pucker with their sweet. Finally, Seasonal flavors like Christmas OREO and Gingerbread OREO win over states like Kansas and Missouri, delivering holiday cheer in cookie form.

Overall, it’s clear that the Original OREO will never be topped, but it is interesting to note which styles and flavor variations Americans favor most. Looking at the styles, the U.S. prefers the OREO styles like The Most Stuf and Mega Stuf OREOs that pack the most creme-filled punch possible. Moving to the flavors, the U.S.’s second most popular flavor is a tie between the Tiramisu and Birthday Cake OREOs. Hilariously, those are both cookies with the flavor of a different dessert. In the U.S., cookie enthusiasts must want to get as much dessert out of one bite as possible! 

Closing Thoughts

Even though the United States is divided about which OREO is the best, it’s clear that OREO is one of the most popular dessert brands in the country. So, no matter what your favorite OREO is—whether the Sour Patch Kids OREO or the Mega Stuf OREO—own it and enjoy it! After all, it takes a lot of hard work for OREOs to reach your pantry. 

With so many unique Oreo flavors to produce, packaging lines and quality control systems need to run flawlessly to keep up with demand. At MRO Electric, our expertise in maintaining and supplying industrial automation components helps support these types of high-volume operations, helping ensure that fan-favorite products make it to store shelves without a hitch. Get in touch with us to learn how we can serve your industrial automation needs. 

Methodology 

To determine the most popular OREO flavor and style in every U.S. state, we compiled a list of 112 search terms* based on OREO’s online cookie collection and various food news publication coverage of limited edition flavors from sources such as Delish and Eat This, Not That! We then analyzed the regional interest of the 112 OREO styles and flavors on our list using Google Trends search data from November 2023 to November 2024. Finally, we compared search interest to find every state’s favorite OREO flavor and style. We used high search interest as an indicator of popularity.

*The list of OREO styles refers to OREO’s original cookie and its various structural formats across its classic products, such as Double Stuf, Thins, and even Golden OREOs. While 21 styles were researched, only eight of them had enough data to include in the study. The list of OREO flavors refers to a list of 93 different OREO flavors or limited edition OREOs including original, specialty, limited edition, and discontinued flavors. While 93 flavors and limited editions were researched, only 24 had enough data to include in the study. Additionally, flavors not sold in the U.S. were excluded from the study.

Legal and Safety Requirements Regarding Arc Flashes

Arc flash incidents are among the most dangerous hazards in the electrical industry, posing serious risks to personnel and equipment. Properly labeled equipment can help prevent injuries and fatalities associated with arc flash incidents. For this reason, the National Fire Protection Association (NFPA) and the National Electrical Code (NEC) have established rigorous guidelines for arc flash labeling. This article explores the legal and safety requirements for arc flash labels, with a focus on NFPA 70E and NEC standards, while discussing the critical role these labels play in workplace safety and regulatory compliance.

Read more: Legal and Safety Requirements Regarding Arc Flashes

What is an Arc Flash?

As we discussed in a previous post, an arc flash occurs when an electric current leaves its intended path, traveling through the air from one conductor to another, or to the ground. This incident can result in temperatures of up to 35,000°F, releasing intense heat, light, sound, and pressure that can cause severe burns, hearing loss, and even death. Recognizing and controlling arc flash hazards is essential for worker safety, and labels play a crucial role in alerting workers to the potential dangers of working with energized equipment.

NFPA 70E: Standard for Electrical Safety in the Workplace

The NFPA 70E is a key standard that provides guidelines for electrical safety in the workplace. It outlines safety practices and requirements for identifying arc flash hazards. It determines appropriate personal protective equipment (PPE), and providing training for workers who may be exposed to electrical hazards.

Under NFPA 70E, labels must include specific information to inform workers about the potential hazards associated with electrical equipment. These requirements include:

  • Nominal System Voltage: Identifies the voltage level of the equipment, allowing workers to determine the level of PPE and other safety precautions needed.
  • Arc Flash Boundary: Defines the minimum safe working distance from the equipment that requires protection.
  • Incident Energy Level or PPE Category: Indicates the level of energy (calculated in calories per square centimeter) potentially released in an arc flash, along with the corresponding PPE level required to protect workers.

It is imperative to place these labels on electrical panels, switchboards, motor control centers, and other equipment where arc flash risks exist. Compliance with NFPA 70E standards not only enhances worker safety but also reduces liability and helps companies avoid potential regulatory penalties.

NEC: National Electrical Code

The National Electrical Code (NEC), also known as NFPA 70, provides guidelines for electrical installations to promote safe electrical practices. Article 110.16 of the NEC addresses labeling requirements, stipulating that electrical equipment likely to require examination, adjustment, servicing, or maintenance while energized must be marked to warn qualified personnel of potential hazards.

The NEC requires that arc flash labels contain a warning message indicating the presence of an arc flash hazard. However, it does not mandate specific details like incident energy levels or PPE requirements. The intent of NEC labeling requirements is to ensure that anyone working on or near the equipment is aware of potential hazards, while NFPA 70E provides the detailed information necessary for personnel safety.

Why Proper Arc Flash Labeling Is Essential

Proper arc flash labeling is crucial for multiple reasons, including the protection of workers, ensuring compliance with regulations, and reducing liability for organizations. Here are the primary reasons why proper arc flash labeling is essential:

  1. Enhances Worker Safety: Accurate and comprehensive arc flash labels help workers identify hazards and determine the appropriate safety measures, PPE, and distance requirements. In the event of an arc flash, properly labeled equipment can prevent or significantly reduce injuries by guiding workers on how to protect themselves.
  2. Facilitates Compliance with Regulatory Standards: Compliance with NFPA 70E and NEC is mandatory for organizations. Failing to adhere to these standards can result in legal consequences, regulatory fines, and increased scrutiny from safety inspectors. By meeting labeling requirements, companies can demonstrate a commitment to workplace safety and regulatory compliance.
  3. Improves Risk Management and Liability Protection: In the event of an arc flash incident, proper labeling can serve as evidence that an organization took reasonable steps to protect its employees. Failure to label equipment correctly increases liability in the event of an incident. Proper labeling helps mitigate this risk and shows due diligence in maintaining a safe workplace.
  4. Supports Effective Training and Awareness: Arc flash labels also play an educational role, providing visual reinforcement of electrical safety practices. When combined with formal training, these labels reinforce key safety information, helping workers remember and follow established protocols.
  5. Promotes Maintenance Best Practices: Arc flash labels indicate when equipment needs de-energizing or when a specific operation requires specific protective measures. This information not only protects workers but also supports maintenance planning. It also ensures that operators follow proper procedures to reduce equipment downtime and improve operational efficiency.
Arc Flash Hazard Warning Sign

Arc Flash Labeling Best Practices

When implementing arc flash labels, consider the following best practices to ensure compliance and maximize effectiveness:

  • Regularly Update Labels: Labels should be reviewed and updated whenever there is a change in the electrical system, such as equipment upgrades or modifications that could alter the hazard level.
  • Use Durable Materials: Labels should be made from materials that can withstand harsh conditions, including high temperatures, moisture, and chemical exposure, to ensure they remain legible and effective over time.
  • Maintain Consistency in Label Design: Consistent labeling formats and terminology across equipment help workers quickly identify and understand hazards. Clear symbols and standardized language make labels more accessible and effective.
  • Incorporate Labels into Training Programs: Safety training should include information on reading and understanding arc flash labels, as well as practical demonstrations to reinforce key safety practices.

Conclusion

Proper arc flash labeling, as mandated by NFPA 70E and NEC, is vital for workplace safety and regulatory compliance. These labels are not merely informational—they are crucial safety tools that guide workers on protective measures and ensure that hazards are clearly communicated. By following established standards and best practices, companies can protect their workers, fulfill their legal obligations, and create a safer work environment.

Understanding an Arc Flash

Understanding an Arc Flash

An arc flash stand as one of the most dangerous electrical hazards encountered in industrial settings. They occur when an electrical current travels through the air between two conductive points, creating an intense burst of heat and light. This sudden, high-temperature discharge of energy can cause severe injury, damage equipment, and even lead to fatalities. While seemingly a rare event, arc flashes occur more than many realize. The consequences if we ignore proper precautions end up being catastrophic.

The energy released during an arc flash can reach temperatures as high as 35,000°F, which is four times the surface temperature of the sun. This extreme heat can vaporize metals like copper and steel, causing molten metal particles to fly through the air. The accompanying pressure wave from the rapid expansion of air can also result in physical injuries, such as hearing damage, lung damage, and blunt-force trauma from projectiles. Additionally, the bright light produced can lead to temporary or permanent blindness. The sheer intensity of them is why it is so critical to understand the risks involved.

Read more: Understanding an Arc Flash

What Causes an Arc Flash?

Several factors can cause an arc flash. These include equipment failure, improper installation, faulty maintenance, or human error. For instance, using improperly rated or damaged tools, dropping metal objects near live equipment, or working on energized systems without proper safety gear can all result in an arc flash. Even something as simple as dust or corrosion on electrical equipment can lower insulation resistance, allowing an arc to form. The likelihood of these events increases significantly in high-voltage environments. Electrical substations or industrial plants that store and manage large amounts of energy daily, often see the highest risk.

The Dangers of an Arc Flash

An arc flash can lead to significant damage to equipment, causing costly downtime and repairs. High-energy ones can destroy electrical panels, cables, and machinery, resulting in production delays and expensive replacements. Worse, if an arc flash ignites nearby flammable materials, it could trigger secondary fires, further escalating the damage. Therefore, many companies invest in preventative measures like sophisticated detection systems and remote operation technology, which allow workers to interact with electrical equipment from a safe distance.

How to Protect Your Equipment

Preventing arc flash incidents starts with the proper training and education of personnel working in environments with electrical systems. Workers need thorough training on how to understand the hazards of arc flashes. The should also know how to identify risks, and the correct safety procedures to follow. One of the most effective preventive measures is to always de-energize electrical equipment before performing any maintenance or repairs. Lockout/tagout (LOTO) procedures, which involve isolating the energy source and placing a lock on the equipment to prevent accidental re-energization, are crucial to minimizing the risk of ocurrences.

Another key precaution is the use of appropriate personal protective equipment (PPE). Workers exposed to potential arc flash hazards should wear flame-resistant (FR) clothing, gloves, and face shields that meet the arc rating required for the specific electrical task. This gear can withstand the high temperatures and energy released during an arc flash which significantly reduces the severity of injuries. Additionally, using safety tools, such as insulated hand tools, reduces the likelihood of accidental contact with live components. It’s also important to maintain a safe working distance from energized equipment, especially in high-voltage environments.

Lastly, routine inspection and maintenance of electrical systems are vital in preventing arc flash incidents. Equipment should be regularly checked for signs of wear, damage, or corrosion, which could compromise insulation and increase the risk of an arc flash. Faulty components should be repaired or replaced promptly. Implementing arc-flash detection and mitigation systems can further reduce risks by automatically shutting down electrical systems if dangerous conditions are detected. By combining proper safety practices, equipment maintenance, and protective measures, companies can significantly lower the chance of arc flash events and protect both workers and equipment.

Conclusion

In conclusion, an arc flash is a potentially deadly hazard that demands respect and proper safety measures. Through a combination of education, awareness, and adherence to established safety protocols, the risks of incidents can be minimized. Understanding the causes, consequences, and prevention strategies not only ensures the safety of workers but also helps maintain operational efficiency and reduce the financial impact of equipment failure. Whether you’re an electrician, engineer, or plant manager, prioritizing arc flash safety is a non-negotiable part of protecting both people and infrastructure.


Damaged Part? Need a Replacement?

If you’re experiencing a damaged drive from an arc flash reach out to us! Our team of experts are ready to help you get your operation back up and running in no time. Our customer service team can be reached by email: sales@mroelectric.com or by phone: (800) 691-8511.


If you liked this article, you may enjoy our other article covering “dirty power” and its effects on industrial equipment.

Distributed Control System (DCS) Explained

A Distributed Control System (DCS) is a type of automated industrial control system (ICS) used to control geographically distributed processes, such as those in factories, power plants, and other large industrial settings. DCS systems rely on a network of controllers distributed across a facility, allowing for real-time monitoring and control of multiple processes simultaneously. These systems are integral in industries where precise, continuous control is essential. Read on to learn more about the meaning of DCS.

What is a DCS?

A Distributed Control System (DCS) is a computerized control system that streamlines the functionalities of industrial devices used throughout a workspace. A DCS utilizes a wide range of controllers to permit all the parts to converse with one another just as PCs do. These controllers are distributed geographically across a plant to allow for high-speed communication to the control process. When utilizing various kinds of modules, the framework may require diverse correspondence norms, for example, Modbus and Profibus.

What is a Distributed Control System
Distributed Control System Layout
Read More