Emerson Industrial Automation Unidrive SP

Emerson Industrial Automation: Unidrive SP Troubleshooting

Emerson Industrial Automation: Unidrive SP Troubleshooting

Updated August 2019: Click here to view Unidrive fault codes.

DIGITAL INPUTS

The Unidrive SP can be enabled to run in several ways. The drive can use digital inputs, keypad, or a field buss networks to give the OK to run. The drive will display inh, rdy, or run depending on the given commands. The drive can be programmed to use positive or negative logic. The logic type is set up at #8.29 in the Control Techniques Unidrive SP. The Unidrive SP defaults to positive logic. When the drive is in positive logic you will need to inject +24VDC to activate the digital inputs. The +24VDC can be supplied by the drive or externally.

The Unidrive SP can be enabled to run in numerous ways.

When the drive is in the terminal mode the following sequence occurs under default conditions:

Unidrive SP:

Inh = Drive disabled = Connect pins 22-31 drive should go to rdy
Rdy = Drive enabled = Connect pins 22-26 drive should go to run
Run = Drive is enabled and ready to run when a speed reference is applied

Parameter #0.05 sets up the Reference Select. This will tell the drive where to search for run commands and speed references. You will only need to close the enable signal if it is set to pad. Then, the keypad can be used to control the drive and to set the speed reference. The speed reference will come in on an analog input if you choose a terminal code. The digital inputs will select the enable, run, and preset selections. The drive should operate as seen above if the digital inputs are activated correctly.

DRIVE SEQUENCER

When the drive is not running, there are several additional parameters in menu 6 that can assess the issue. The digital inputs may be configured wrong or inactive if the parameters are not going to a 1 with the corresponding commands. Check the following parameters:

#6.15 = 1 = Drive enabled

#6.43 = 1 = Control word disabled, Set to 1 for Field Buss Control

#6.29 = 1 = Hardware Enable (Pin 31 is activated)

#6.30 = 1 = Run Forward #6.31 = 1 = Jog

#6.32 = 1 = Run Reverse

#6.33 = 1 = Forward/Reverse

#6.34 = 1 = Run

#6.37 = 1 = Jog Reverse

#6.39 = 1 = Not Stop

Unidrive SP

The voltage on the corresponding digital inputs should be measured if the parameters in menu 6 aren’t changing state accordingly. The DC voltage should change between 0VDC and 24VDC when a command is given. Check the digital input configuration in menu 8 if menu 6 isn’t changing and the voltage is.

CONTROL WORD

To control the start/stop functions, the drive does not have to use the digital inputs. When #6.43 = 1 the control word is enabled. The drive will now accept a decimal value from 0 to 32767 at #6.42. This decimal value can be converted to a binary value.To see the function that will be carried out, you can reference the binary value to the chart below.

Unidrive SP

Speed Reference

The drive still may not run if the digital inputs and the drive sequencer are each working properly. There could be an issue with the speed reference to the drive if the display shows Run but the motor isn’t turning. The speed reference is able to be applied in several methods. An analog input can be used (current or voltage), preset speeds, and a field buss reference. The example is a 0-10VDC signal on analog input #1.

The final speed of the demand is parameter #3.01. The speed reference should be displayed here if the digital inputs and the drive sequencer are failing to operate properly. Check menu 1 and 2 to determine where it is stopping if the reference is not getting to this point.

If the drive is running in torque mode, the torque reference will come on parameter #4.08 under default conditions. #4.08 is able to be linked to an analog input or be written to via a filed buss network.

Unidrive SP

#7.01 should be inspected to determine if it changes with the change in reference at terminal 5 once the signal has been confirmed. #7.01 goes from +/- 0% – 100%. Check the destination of the speed reference at #7.10 if everything looks good. Follow it to the destination and confirm the speed reference value is arriving there and then through #3.01.

Unidrive SP

Contact the America’s Service Center if the drive will still not run after the Speed Reference, Digital Inputs and Drive Sequencer have all been confirmed.

MRO Electric and Supply has new and refurbished Control Techniques Unidrives available now, and also offers repair pricing. For more information, please call 800-691-8511 or email sales@mroelectric.com.

Emerson Industrial Automation: Unidrive Classic HF Trip Codes

Emerson Industrial Automation: Unidrive Classic HF Trip Codes
This document is pertinent to all Unidrive Classic models
MRO Electric and Supply has new and refurbished Control Techniques Unidrives  available now, along with our other Control Techniques products. Contact us about pricing for repairs. For more information, please call 800-691-8511 or email sales@mroelectric.com.
Emerson Industrial Automation: Unidrive Classic HF Trip Codes

HF81 Software Error (odd address word)

Unidrive Fault Code DiagnosticsHF81 HF82 HF83 HF84 HF85 HF86 HF87 HF88 HF89 HF90 HF91 HF92 HF93 HF94 HF95 HF96 HF97 HF98 HF99

HF82 Large Option Module Missing

HF83 Power Board Code Failure

HF84 Current Offset Trim Failure

HF85 A to D failure (ES-CC step)

HF86 Interrupt Watchdog failure

HF87 Internal ROM check error

HF88 Watchdog Failure

HF89 Unused Interrupts (nmi as source)

HF90 Stack Overflow

HF91 Stack Underflow

HF92 Software Error (undefined op code)

HF93 Software Error (protection fault)

HF94 Software Error (odd address word)

HF95 Software Error (odd address instruction)

HF96 Software Error (illegal ext bus)

HF97 Level 1 Noise

HF98 Interrupt Crash

HF99 Level 1 Crash

HF Faults are not recorded in the Drive Historical Fault Log

All of the above HF trips in BLUE are typically a result of some sort of hardware failure on the UD90A control PCB. This control board is common to all Unidrive Classics.

For the HF codes in RED refer to the following page

HF82 Large option module missing

If one of the UD7x large option modules is removed, the trip may be expected. There is an issue with either the large option module or the UD90A control PCB if this trip occurs at any other time than the case above.

HF83 Power Board Code Failure

Because the UD90A control PCB was unable to recognize the power rating of the power PCB it is connected to, this trip occurred.

The trip is likely due to the power PCB in the Drive or a problem with the UD90A control PCB on Unidrive Sizes 1 to 4 (which includes UNI1401, UNI1402, UNI1403, UNI1404, UNI1405, UNI2401, UNI2402, UNI2403, UNI3401, UNI3402, UNI3403, UNI3404, UINI3405, UNI4401, UNI4402, UNI4403, and UNI4404).

UD99 PCB or the UD90A PCB cause the trip on a Unidrive Size 5. The interconnects between the PCBs should also be checked, as they could also cause a trip.

HF84 Current Offset Trim Failure

Due to an issue with the current feedback on the drive, this trip occurs. The trip is likely due to the power PCB in the Drive on Unidrive Sizes 1 to 4. An issue with the UD90A control PCB may also cause this trip.

The UD99 PCB or the UD90A PCB cause the trip on a Unidrive Size 5, along with the interconnects between the PCBs.

HF88 Watchdog Failure

This trip can result from a faulty UD7x Co-Processor. With power off, remove Co-Processor and re-apply power.

HF82 Large option module missing

If one of the UD7x larger option modules is removed while the Drive is powered up, this trip is likely to occur. There is an issue with either the UD90A control PCB or the large option module if this trip were to occur at any other time.

HF83 Power Board Code Failure

The UD90A control PCB was unable to recognize the power rating of the power PCB it is connected to, which is what caused the trip.

The trip is likely due to the power PCB in the Drive on Unidrive Sizes 1 to 4, however, an issue with the UD90A control PCB is also able to cause this trip.

The trip is caused by the UD90A PCB, the UD99 PCB, or the interconnects between the PCBs on a Unidrive Size 5.

HF84 Current Offset Trim Failure

If there is an issue with the current feedback on the Drive, this trip will occur. The trip is likely due to the power PCB in the Drive, but an issue with the UD90A control PCB could also result in a trip on Unidrive Sizes 1 to 4.

On a Unidrive Size 5, the trip is cause by either UD99 PCB or the UD90A PCB. The interconnects between the PCBs could also cause this trip and should be checked.

A trip could be caused by either UD99 PCB, UD90A PCB, or the interconnects between the PCBs on a Unidrive Size 5.

HF88 Watchdog Failure

A faulty UD7x Co-Processor and large option module, ( includes UD70, UD71, UD73, UD74, UD75, and UD76) can cause this trip. Remove Co-Processor and re-apply power with power off.

Unidrive Fault Code DiagnosticsHF81 HF82 HF83 HF84 HF85 HF86 HF87 HF88 HF89 HF90 HF91 HF92 HF93 HF94 HF95 HF96 HF97 HF98 HF99

Schneider Electric / Modicon PLC and HMI Batteries

Schneider Electric / Modicon PLC and HMI Batteries

MRO Electric and Supply has new and refurbished Schneider Electric and Modicon Quantum parts available now, and also offers repair pricing. For more information, please call 800-691-8511 or email sales@mroelectric.com.

Schneider Electric / Modicon PLC and HMI Batteries

Product Line Model Type Part Number Manufacturer
140CPUxxxxx
Lithium 3V
990XCP98000
Duracell (DL2/3A)
(soldered connector)
Quantum 140XCP90000 Lithium 990XCP99000
Quantum
141MMS42501
Lithium 3V
990XCP98000 or Duracell (DL2/3A)
43502625 (soldered connector)
Quantum
141MMS53502
Lithium 3V
990XCP98000 or Duracell (DL2/3A)
43502625 (soldered connector)
Compact PC-O984-xxx Lithium 3.6V (long) “O” 60-0576-000 Eternacell (T04/41)
Compact
PC-A984-1xx
Lithium 3.6V (short) “A”
60-0576-100
Saft (LS3)
PC-E984-2xx Maxell (ER3STC)
Momentum
172xNN2xx2
Lithium 3.6V
170XTS15000
Tadiran (TL-5955)
PNN PV:03
JNN PV:01
Momentum 172xNN2xxx2 Alkaline “AAA” Commercially Available
110CPUx1x0x
Lithium 110XCP98000 Duracel (DL2/3A)
Capacitor 110XCP99000 (soldered connector)
Modicon 984 AM-C986-003
(2 cell pack)
MA-9255-000
Modicon 984 AM-C986-004
Modicon 984 AM-M907-1xx
Modicon 984 AM-M909-0xx
Modicon 984 AM-C921-xxx 60-0490-000
Modicon 984 PC-L984-x8x
Lithium 3.6V “AA”
60-0515-000
Eternacell (T06141)
Modicon 984 PC-O984-x8x Maxell (ERGC#5)
Modicon 984 PC-E984-x8x Saft (LS6)
Modicon 984 PC-O984-455 Tadaran (TL-5104)
Modicon 984 PC-O984-351
Modicon 984 AM-C986-004
Modicon 984 AM-C996-80x
Modicon 984 PC-M984-23x
Modicon 984 AS-B984-1xx
Modicon 984 AM-S929-00x
Lithium
MA-8234-000
Modicon 984 AS-B885-00x
Modicon 984 AM-O984-ATX 60-0490-000
Modicon 984 Rechargeable (Qty. 2) 60-0610-000
Modicon 984 100-865 (Qty. 3) 60-0595-000
Modicon 984 AM-O984-MCX 60-0582-000
Modicon 884
Modicon 884
AS-884A-xxx
MA-8234-000
AS-J890-x0x
Modicon 584 AS-506P-xxx Lithium (3 card) MA-0147-001
Modicon 584 AS-509P-xxx Lithium (4 card) MA-0147-002
Modicon 584 AS-M507-00x 60-0481-000
Modicon 584
3 Card Battery Pack
Lithium AS-5284-001
Alkaline AS-5284-002
Modicon 584
4 Card Battery Pack
Lithium AS-5378-002
Alkaline AS-5378-001
Modicon 484
Lithium MA-0147-001
Alkaline 60-0286-000
Modbus Multiplexer
Modbus Multiplexer NW-0278-000 60-0549-000
0085/0185 (Sharp)
0085/0185 (Sharp)
(with connector) PA-0254-000 Sharp
(without connector) PA-0493-000 (UBATN-5001-SCZZ)
Symax
Symax
Model 400
Lithium 3.6V “AA”
60-0515-000 Eternacell (T06141)
Model 450 29576-03688 Maxell (ERGC#5)
Model 600 (SqD Part #) Saft (LS6)
Model 650 Tadaran (TL-5104)
PS25
PS35
8052 MCM713
Symax
PS20/21
Alkaline “D”
Commercially Available
PS30/31
PS50/51
PS60/61
Symax
8005 Model 50
Ram Memory Pack
8005 MP1
8005 MP4
Symax
PS20
Battery Holder
29904-08200
(SqD Part#)
Symax
SCP1xx 8020 SMM115
8040 PCM-110 (SqD Part #)
Symax
M100
29904-08960
(SqD Part #)
Symax
8009 Compact
Lithium 3V (Type BA1)
Sanyo (CR12600SE)
TDI Battery Co. (?)
Otte Controls
(DUNT-521NCZZ)
Symax
Symax 20
8884 SBP20
(SqD Part #)
PanelMate
PanelMate
all models
60-0627-000
Maxell
60-0628-000
PanelMate PM0632400 (Qty. 3) 60-0595-000
PanelMate PA-0285-000
PanelMate MA-024M-000
Telemecanique
TSX Premium TSXP57xxx Lithium 3.6V “1/2 AA” TSXPLP01 Saft (LS3)
TSX Micro TSXP37xxx Single TSXPLP101 Maxell (ER3STC)
TSX Micro Ten Pack
TSX Micro
TSXMRPxxxxx
Lithium 3V “Button” TSXBATM01
Panasonic (BR2325)
Single TSXBATM101
10 Pack
CCX17
TCCX17xxx
Lithium 3.6V “1/2 AA” TSXPLP01 Saft (LS3)
Single TSXPLP101 Maxell (ER3STC)
Ten Pack
FTX117
TFTXRSMxxxxx
Lithium 3V “Button” TSXBATM01
Panasonic (BR2325)
Single TSXBATM101
10 Pack
TSX 17
Lithium 3.6V “1/2 AA”
TSX17ACC1
Saft (LS3)
Maxell (ER3STC)
(Soldered Connectors)
XBTKN
Lithium 3.6V “1/2 AA”
TSX17ACC1
Saft (LS3)
XBTKM Maxell (ER3STC)
(Soldered Connectors)
Series 7
TSX 27xx
2.6 V
AZ1 AQ 0006
2.4 Volt with minimum of 110 mAH
TSX P471x/P472x Shrink-wrapped cells
TSX RAM xx 8 Soldered on board
TSX AXM 162
TSX AXM 171xx/182
TSX SCM 2xxx
UC TSX 27
Series 7
TSX P473xx/P474xx 3.6V
AZ1 AQ 0002
3.6 Volt with minum of 110 mAH
TSX P67xxx Shrink-wrapped cells
TSX 76 x Soldered on board
TSX P871/P872/P874xx
TSX P76 x
TSX P107xxx
TPMX P474xx
TPMX P674xx
TPMX874xx
TPMX P1074xx
TSX T407 x
TSX RAM xxx 16
TSX MEM 4x
TSX P87 30/310 3.6V (Qty. 3)

FANUC A16B-1212-0100 Power Supply Unit

MRO Electric and Supply has new and refurbished FANUC A16B-1212-0100 power supply units available now, and also offers repair pricing. For more information, please call 800-691-8511 or email sales@mroelectric.com.
a16b-1212-0100 wiring diagram
A16B-1212-0100 Wiring Diagram

The A16B-1212-0100 is an easy to mount CNC power supply that is designed to connect directly to the System 0 master PCB. All its AC inputs and DC outputs are linked via connectors. Because the power supply unit has a built-in input unit function, it is not necessary to prepare a a separate relay or input unit for switching the AC input on and off. The AC input can be connected directly to the power supply unit. The unit has an AC service outlet, which is switched on and off simultaneously with the power supply unit. This AC service outlet can be used to supply power to a unit such as a fan motor. Sometimes the alternate FANUC part number P007P0355 is used.

FANUC A16B-1212-0100 Input / Output Connectors

Connector NameDescription
CP1200/220/230/240 VAC input
CP2200/220/230/240 VAC output
(switched on and off simultaneously with the power supply unit)
CP3- Power on/off switch contact signal input.
- External alarm signal input.
- Alarm signal input.
CP12- Supply of +5 V, +15 V, –15 V, +24 V, and +24E to the master
printed–circuit board.
- EN signal output.
CP14- +24E supply for the additional I/O B2 printed circuit board
(for Series 0).
- +24E supply for the connection unit (for Series 15)
CP15+24V supply for the 9” monochrome CRT/MDI unit (for Series 0).

* MRO Electric can offer replacement 9" monitors for your unit.

Descriptions of the A16B-1212-0100 I/O Signals and Display LEDs
    1. AC power supply display LED (green) – When an AC power source is connected to the power supply unit, the LED lights regardless of whether the unit is on or off.
    1. Alarm display LED (red) – If the power supply unit is switched off because of an alarm condition due to a failure such as an output error, the alarm display LED lights and remains on until the alarm condition is cleared by pressing the OFF switch or shutting down the AC power supply.
  1. ENABLE signal EN (output) – This TTL level signal indicates that all DC outputs are normal. It becomes low if an output failure is detected in any circuit.
  2. Power supply on/off control signal ON–OFF–COM (input) – If two switches are connected to this circuit as shown below, pressing the ON switch turns on the power supply unit, while pressing the OFF switch turns the unit off. If an alarm occurs in the power supply unit, and the alarm display LED lights in red, however, pressing the ON switch will not turn on the power supply unit. In this case, it is necessary to remove the cause of the alarm and press the OFF switch. Pressing the OFF switch clears the alarm condition. Subsequently pressing the ON switch turns on the power supply
    unit.
  3. External alarm signal AL (input) – When a contact signal from another unit or external power supply becomes ”closed,” the ENABLE signal of this power supply unit becomes low, thus immediately turning off the power supply unit.
  4. Alarm signal FA–FB (output) –  This contact signal indicates the state of all DC outputs. The contact is open when all the DC outputs are normal. It is closed if an output failure is detected in any DC output circuit. If an external alarm signal (item 5) is connected, the FA–FB contact opens, when all DC outputs are normal and the external alarm signal is ”open.” The contact closes when the external alarm signal becomes ”closed.”
Adjustments and Settings

The FANUC A16B-1212-0100 power supply unit requires no adjustment or setting. Do not attempt to adjust the reference voltage (=10.00V) at A10 unless absolutely necessary, because the reference voltage has been adjusted during unit test; merely confirm the voltage across A10 and A0 of check connector CP16. If the reference voltage at A10 falls outside the rated range, set it to 10.00V, using VR11, while measuring the voltage with a digital voltmeter. Rotating VR11 clockwise increases the voltage at A10. After the power supply unit is replaced, always to check the reference voltage at A10.

a16b-1212-0100
A16B-1212-0100
fanuc repair

Automation Cleanup Procedures for Flood Damages in TX & LA

Automation Cleanup Procedures for Flood Damages in TX & LA

MRO Electric is determined to provide the best service and support to businesses affected by Hurricane Harvey during these difficult times as they resume operation and employees get back to work.

Water-immersed electronic devices and motors in automation systems need appropriate treatment after flood water subsides. We have compiled information we learned from our past flood relief activities below, which we think our customers affected by Harvey may find useful.

We also have the capability to wash and test the amplifiers and printed circuit boards at our repair facilities.

Recovering Industrial Electronics from Flood Damage

If the CNC and related equipment are treated properly after being soaked with flood water, it is possible to reduce or even recover from the damage. The purpose of this section is to describe proper post-flood treatment.

Things to keep in mind:

  • In case of flood, do not open cabinets and units. It is better to wait until the flood water recedes.
  • If it is possible to drain actively, the early drainage can reduce the damage.

Outline of the procedure after flood water recedes is as follows:

  1. Remove batteries & cables
  2. Wash the units
  3. Dry the units
  4. Check the insulation resistance
  5. Check the functionality (Performed by MRO Electric’s engineers)

Remove batteries & cables

In order to minimize a damage to unit, please perform following at first:

  1. Please remove battery cables from units and PCBs (Printed Circuit Board) as soon as possible. Flooded batteries may cause rust damage to PCB’s circuitry and could result in irreparable PCB damage. Removing the batteries will result in loss of CNC data, but it is necessary to protect the hardware from further damage.
  2. Remove cables before washing. Please properly tag or mark so you will be able to connect cables back correctly.

Washing the Units

Wash the units according to the procedure below as soon as possible. Damage will worsen if washing is delayed.

  1. Unit –  Floodwater often contains contaminates such as dirt and oil. This could stick to the unit and could become difficult to remove. Use a neutral detergent, such as multipurpose kitchen detergent, tap water, and nylon brush (do not use a metal brush) to clean them as much as possible. Use a small brush such as a toothbrush and clean the entire unit with specific attention to connectors and sockets.
  2. Relays –  If relays have water inside, please open the case and clean inside. (If the case cannot be opened, you will need to replace it.)
  3. Transformers –  It is not possible to clean inside a transformer coil, however, please clean the unit as much as possible especially around the electrical terminals.
  4. Cables –  Connector housings will contain flood water. Please disassemble the connectors to drain any water, clean them, and then dry by hanging the cable with the connector at the bottom. (It is also possible that flood water also enters between cable strands). Please be mindful of this.
  5. Servo and Spindle Motors – These motors cannot be disassembled by the customer.
    Please have MRO Electric’s engineers clean these parts. If you see waters entering inside the cover on the motor, the cover may be removed to release the water and carefully clean around the feedback assembly.
  6. Motor Drive Units – Please use flowing water to clean the motor drive units. Please refrain from submerging the unit during cleaning.

Drying Units

After washing, please remove as much water as possible and let then dry. The electrical resistance is lower due to the moisture, so please do not attempt to mount or apply electrical power until the unit is completely dry. It will take a long time if you just leave the unit at room temperature. Transformers, especially, will require a few months if not dried to high temperature. It is necessary to use a high heat to evaporate the humidity inside the transformer.

Drying Oven
It is possible to gain enough insulation back in a few hours if you can use a drying oven with enough high heat. However, please be careful if the temperature is too high, it may melt the insulation material. A vacuum type drying oven may be useful for this type of equipment.

Here are a few examples of temperature and drying time for FANUC products, after removing as much water as possible by hand:
· Servo Transformer – In 120 degree C (248 degrees F) for 8 hours
· Servo Motors – In 80 degree C (176 degrees F) for 12 hours (with Pulse coder removed)
· PCB (Printed Circuit Boards) – In 60 degree C (140 degrees F) for 1 hour.

Without a Drying Oven
Please prepare a fanned heater. It is a good idea to use a hair dryer to send heated air (around 140 degrees F is desirable). Please be careful as it may become too hot if you send the air directly to the unit. PCB and units may be dried in a half, to one full day, but the transformer may take a few days.

Check the Insulation Resistance

It is very important that insulation resistance is tested before applying power.

  1. Transformer – Measure the insulation resistance using 500V Megameter between coils, and between coil and metals such as core. The measurement should be 10 Megohm or more.
  2. Servo Motors and Spindle Motors – Measure the insulation resistance between the motor windings and ground. The measurement should be 10 Megohm or more. Please note that the encoders may be damaged by the flood water. Please open the motor case and check. If you see the sign of entering the water, the encoders may need to be replaced.

Check the Functionality

MRO Electric engineers and machine tool builder engineers may need to work in sync because machine side repair and adjustment will also be required. If the insulation resistance is adequate, then the unit may be installed. Confirm all cable connections and wiring, then apply power and confirm the operation. If insulation is not sufficiently recovered due to insufficient drying, there is a possibility of ignition due to short circuit or heat generation, so pay attention to the generation of smell and smoke for a while after energization, immediately turn off the power when there is an abnormality.

If parameters were lost and a recent back up is not readily available, it is our recommendation to contact the machine tool builder to assist you. They will also be able to assist in any machine side adjustments and/or set up procedures before the final operation is started.

Our goal is to quickly and safely return your machine back into production. Do not hesitate to contact MRO Electric if you believe your equipment is damaged and is in need of testing and/or repair, or if you require a replacement part.

Please contact us at 800-691-8511 or at sales@mroelectric.com.

6sn1123-1ab00-0ca1

Siemens Simodrive 6SN1123-1AB00-0CA1 Power Supply Module

The Siemens Simodrive 6SN1123-1AB00-0CA1 is a 2 Axes, 50 Amp Power Module with internal cooling. The module’s motor rated current for the 1FT5 series is 25 A, and 18 A for the 1FT6 series. However, the power module can be used with a variety of Siemens and third-party motors. The 6SN1123-1AB00-0CA1 is also equipped with overload protection , which prevents motors and cables from being overloaded.

The 6SN1123-1AB00-0CA1 is part of the Simodrive 611 Converter System that can be used for a variety of purposes, including machine tools, robots and manipulators, mass production, form and tool construction, presses and packing machines, and production machines for glass, wood, stone, and textile. The Simodrive’s compact and modular nature allow it to be used for a variety of manufacturing solutions, and can be easily expanded whenever necessary.

Here are the overall specs for the 6SN1123-1AB00-0CA1:

For Operation of Induction Motors
Nominal Current (A eff): 24
Current for S6-40% (A eff): 32
Peak Current (A eff): 32
Inverter Pulse Frequency (kHz): 3.2
Derating Factor XL (%): 55
Power Loss Total (W): 538
Power Loss Internal (W):184
Power Loss External (W): 250
For Operation of Synchronous Motors
Nominal Current (A eff): 18
Peak Current (A eff): 36
Inverter Pulse Frequency (kHz): 4
Derating Factor XL (%): 55
Power Loss Total (W): 380
Power Loss Internal (W):130
Power Loss External (W): 250
General Technical Data for the Regulated Infeed:
Input Voltage (V DC): Regulated – 600V or 625V  DC; Unregulated- U DC Link=U Supply*1.35.
Maximum Output Voltage (V eff): U a_max = (U DC Link / 1.4)
Minimum Motor Current (A): 3.6
Transistor Limit Current (A): 50
Efficiency: 0.98
Module Width (mm): 100
Weight approx. (kg): 13.5
Maximum Air Flow of Fan (Volumetric Flow m3/hr): 56
Motor Connection: Connectors

The 6SN1123-1AB00-0CA1 can be operated as both a regulated and unregulated power supply for the drives.

MRO Electric has new and refurbished 6SN1123-1AB00-0CA1 Power Modules available. For more information or to request a quote, please call 800-691-8511 or email sales@mroelectric.com.

FANUC Controls Alarms

FANUC Troubleshooting Manual – FANUC CNC FAQ

FANUC CNC machine is an extremely useful tool – but like many tools, it’s susceptible to breaking. Read on to learn common FANUC issues and how to best troubleshoot to solve the problem.

What is the proper method to test a motor for a short?
The proper way to troubleshoot a FANUC motor for a short is to first lock out the machine, remove the cable from the drive, and test all three motor phases to ground with a megohmmeter. This will test both the motor and the cable for problems.

Why am I getting errors when I connect to my FANUC drive’s RS-232 port?
There are a number of explanations for these errors. The RS-323 port is a high-fail component on a FANUC drive as it is very susceptible to electrical surges. However, the RS-232 cable is also another high-fail item. Ensure that you are using a cable that is known to be functional when communicating. Otherwise when you attempt to read-in or punch-out a cable, you will get an 086 alarm that is going to indicate that the cable is incorrect, or that the port has failed.

To test whether the cable or the port has failed, take a known good cable and insert it into the RS-232 port. Next, set your machine up to receive a file. The screen should being to flash “READ”. Next, transmit your file into the machine tool. If the machine continues to flash “READ” (or “LSK” on modern controls) but never receives the file, you have a defective communications port on either the memory board or the master board. These boards or your machine will need to be sent in for repair.

What is an Axis Communications Error?
An Axis Communications Error indicates a communications problem between the motor encoder and the CNC control. This can be caused by the motor encoder itself,  the cable going to the encoder, or the axis control card the cable is plugged into.

What is an Excess Error Alarm and why is it caused?
Generally, an Excess Error means that the machine has moved beyond its allowable tolerance. The CNC has told the FANUC servo drive to make a move, the servo drive moves the motor,  which in turn moves the encoder. As the machine moves, there will be some deviation. This deviation is known as the Excess. The parameters set how much deviation/excess should be allowed.

These errors can be caused by a variety of problems. For example, a dull tool can caused the axis to be pushed out of position which results in a deviation error. Debris build up can cause deviations while the machine is stopped. Additionally, a failed servo drive can also cause deviation errors.

What is FANUC 401 Servo Alarm?
Alarm 401 is a very generic FANUC alarm. It simply means that the servo’s did not obey. The CNC, which is in charge of the servos, tells the servo drives to turn on and remain on. If for whatever reason the servo drive turns itself off without the permission from the CNC, the CNC will generate a 401 alarm. This alarm will usually occur with other alarms, such as the 414 Alarm.

What is FANUC Servo Alarm 414?
The FANUC Servo Alarm 414 is an alarm issued by the CNC that says a problem has been found in either the servo drive or the feedback system. The alarm will show which axis is causing the problem. To identify the specifics of this alarm, you must go into the CNC diagnostics page. Diagnostics number 200 on the 16th row will indicate what is causing the problem.

What is the difference between a High-Current Alarm and an Over-Current alarm?
A high current is an abnormal current that can be caused by noise. When the system detects this, it will generally shut the machine down and generate a High-Current Alarm. This FANUC alarm code is usually caused by defective servo drive or cooling contamination inside of the motor windings or cable.

An Over-Current Alarm indicates that too much current has flowed through the DC link. This is usually caused by a short in the system, an unplanned contact, a defective transistor module, or dull tooling attempting to make a cut. 

Why do I get a Soft Overtravel Alarm when I try to reference a newly installed motor?
When the CNC power down, it remembers its last known position. When you restart the machine, an incremental encoder will ask that the machine be re-positioned. When you try to do a re-reference of the machine tool, and it doesn’t agree with where the last known position was, the machine with automatically go into a default that indicates a Soft Overtravel Alarm. These alarms can occur as any point in the travel of the machine. To bypass this alarm, power the machine down and hold down the key with the letter “P” on it as well as the “Cancel” button (at the same time). Then power the machine up while you continue to hold down both of these buttons. If you do this, the machine will ignore all Soft Overtravels until the first zero referenced position has been done on that axis, and will clear the Soft Overtravel Alarms.

I unplugged my AC or DC FANUC motors, and now I am getting a 300APC Alarm. What is that?
A 300APC Alarm indicates that you are using an absolute pulse coder. The difference between an absolute pulse coder and a incremental pulse coder deals in the memory retention of the position. Using a CNC control with an incremental pulse coder, you must reference the machine every time you turn the machine back on.

With an absolute pulse coder, there is a battery backed memory that retains the position of the machine tool when it powers down. When the CNC machine turns back on, it asks the encoder its position, and the encoder then responds back with its current position. If it is within tolerance of where it was when it shut down, the CNC will continue to run the program. However, if you lose the memory retention due to an encoder cable being unplugged, you will end up with the 300 level APC alarms. These FANUC alarms simply signify that the machine must be re-referenced. The re-referencing procedure is determined by the machine tool builder – consult your machine tool builder manual for the proper operation.

If this FANUC troubleshooting manual was not comprehensive enough, MRO Electric stocks new and refurbished FANUC products, and also offers reliable FANUC repairs. Please call 800691-8511 or email sales@mroelectric.com for a quote.