A PLC installed alongside other components

What Is a PLC (Programmable Logic Controller)?

What Does “PLC” Stand For?

A Programmable Logic Controller, abbreviated as “PLC” is a computer used to address the issues of a particular assembling process. These devices come in a wide range of shapes and sizes, with numerous alternatives for computerized and simple I/O, as well as protection from high temperatures, vibration, and electrical noise. The invention of the PLC allows for computers to be streamlined into the industrial automation process.

A PLC can be a solitary device figuring and executing operations, or a rack of various modules utilized to meet whatever your automation system requires. A portion of the extra parts include processors, power supplies, additional IO, interfaces, and more. Each part cooperates to have the option to run open or shut circle activities that are appraised at fast and high accuracy. Take a CNC machine for instance; a PLC would be utilized to control positioning, motion, and torque control. These devices are popular since they are inexpensive in relation to the amount of power and lifespan they possess. PLCs can run for hours on end. 

Read More

A Comprehensive G Code Guide: Discovering Fanuc G Codes and CNC G Code Commands

As a generic name for a plain-text language that CNC machines are able to understand, G-Codes are important to understand in the manufacturing, automation and engineering spaces. You can enter a G-Code manually if you wish, but you do not have to because of the CAD/CAM software’ abilities along with the machine controller.  G-Codes are not necessarily readable by humans, but it’s possible to look through the file and determine what is generally occurring.

What Is G Code?

In the factory automation space, nobody likes downtime and receiving error codes. While using CNCs (view FANUC CNC parts here), many professionals are faced with G Codes. By definition, a G Code is a computer code language that is used to guide CNC machine devices to perform specific motions.

What Do CNC G Codes Do?

G Codes are important because they allow easy, repeatable control of the motion of a CNC machine. A few examples of specific motions that CNC G Codes can control, would be:

  • canned cycles
  • work coordinates
  • several repetitive cycles.

Canned Cycles

Also referred to as a fixed cycle, canned cycles are ways to effectively and efficiently perform repetitive CNC machining operations. They automate specific machining functions. A few examples would be pocketing, threading, and drilling. A canned cycle is almost always stored as a pre-program in a machine’s controller. To learn more about canned cycles, check out this article courtesy of zero-divide.net.

Work Coordinates

The G Code coordinate pipeline goes something like this:

  • Unit conversion to metric
  • Convert from relative to absolute and polar to Cartesian: g90g91XYZ()
  • G52, G54, and G92 offsets
  • G51 scaling
  • G68 coordinate rotation

G-Code is the most popular programming language used for programming CNC machinery. Some G words alter the state of the machine so that it changes from cutting straight lines to cutting arcs. Other G words cause the interpretation of numbers as millimeters rather than inches. Some G words set or remove tool length or diameter offsets. Be sure to check out our article covering FANUC CNC Codes, including FANUC M Codes, here.

MRO Electric and Supply has new and refurbished FANUC CNC parts available. We also offer repair pricing. For more information, please call 800-691-8511 or email sales@mroelectric.com.

What Are the Different Types of G Code Commands?

Listed below are some easily-understood G-code commands in which are used for setting the speed, feed, and tool parameters.

F= Feed

The F value in G-code is used to set the feed rate, which determines the speed at which the machine’s extruder or tool head moves. F values are typically measured in millimeters per minute (mm/min), so dividing the F value by 60 converts it to millimeters per second (mm/s). For instance, an F value of F1500 means the feed rate is 25 mm/s. The machine operates at this specified feed rate when a G1 command is used, which is essential for precise control of the movement speed.

It is crucial to set the feed rate (F) before the first G1 command to avoid errors. Here’s an example of setting the feed rate:

  • G1 F1500 X100 Y100

In this example, the machine will move to the coordinates X100 Y100 at a speed of 1500 mm/min (25 mm/s).

S= Spindle Speed

The S command’s purpose is to set the spindle speed. The Spindle speed is almost always set in RPMs (revolutions per minute). Here is an example:

  • S10000

T= Tool

The T command’s purpose is paired with M6 in order to display the tool number to be used for cutting the current file. Here is an example:

  • M6 T1

Common G Code Command List

Below is a comprehensive list of common CNC G Codes, designed to guide you through the essential programming for CNC machines.

  • G00     Rapid traverse 
  • G01     Linear interpolation with feed rate
  • G02     Circular interpolation (clockwise)
  • G03     Circular interpolation (counterclockwise)
  • G2/G3 Helical interpolation
  • G04     Dwell time in milliseconds
  • G05     Spline definition
  • G06     Spline interpolation
  • G07     Tangential circular interpolation, Helix interpolation, Polygon interpolation, Feedrate interpolation
  • G08     Ramping function at block transition / Look ahead “off”
  • G09     No ramping function at block transition / Look ahead “on”
  • G10     Stop dynamic block preprocessing
  • G11     Stop interpolation during block preprocessing
  • G12     Circular interpolation (CW) with radius
  • G13     Circular interpolation (CCW) with radius
  • G14     Polar coordinate programming, absolute
  • G15     Polar coordinate programming, relative
  • G16     Definition of the pole point of the polar coordinate system
  • G17     Selection of the X, Y plane
  • G18     Selection of the Z, X plane
  • G19     Selection of the Y, Z plane
  • G20     Selection of a freely definable plane
  • G21     Parallel axes “on”
  • G22     Parallel axes “off”
  • G24     Safe zone programming; lower limit values
  • G25     Safe zone programming; upper limit values
  • G26     Safe zone programming “off”
  • G27     Safe zone programming “on”
  • G33     Thread cutting with constant pitch
  • G34     Thread cutting with dynamic pitch
  • G35     Oscillation configuration
  • G38     Mirror imaging “on”
  • G39     Mirror imaging “off”
  • G40     Path compensations “off”
  • G41     Path compensation left of the workpiece contour
  • G42     Path compensation right of the workpiece contour
  • G43     Path compensation left of the workpiece contour with altered approach
  • G44     Path compensation right of the workpiece contour with altered approach
  • G50     Scaling
  • G51     Part rotation; programming in degrees
  • G52     Part rotation; programming in radians
  • G53     Zero offset off
  • G54     Zero offset #1
  • G55     Zero offset #2
  • G56     Zero offset #3
  • G57     Zero offset #4
  • G58     Zero offset #5
  • G59     Zero offset #6
  • G63     Feed/spindle override not active
  • G66     Feed/spindle override active
  • G70     Inch format active
  • G71     Metric format active
  • G72     Interpolation with precision stop “off”
  • G73     Interpolation with precision stop “on”
  • G74     Move to home position
  • G75     Curvature function activation
  • G76     Curvature acceleration limit
  • G78     Normalcy function “on” (rotational axis orientation)
  • G79     Normalcy function “off”

Milling Applications

  • G80     Canned cycle “off”
  • G81     Drilling to final depth canned cycle
  • G82     Spot facing with dwell time canned cycle
  • G83     Deep hole drilling canned cycle
  • G84     Tapping or Thread cutting with balanced chuck canned cycle
  • G85     Reaming canned cycle
  • G86     Boring canned cycle
  • G87     Reaming with measuring stop canned cycle
  • G88     Boring with spindle stop canned cycle
  • G89     Boring with intermediate stop canned cycle

Cylindrical Grinding Applications

  • G81     Reciprocation without plunge
  • G82     Incremental face grinding
  • G83     Incremental plunge grinding
  • G84     Multi-pass face grinding
  • G85     Multi-pass diameter grinding
  • G86     Shoulder grinding
  • G87     Shoulder grinding with face plunge
  • G88     Shoulder grinding with diameter plunge
  • G90     Absolute programming
  • G91     Incremental programming
  • G92     Position preset
  • G93     Constant tool circumference velocity “on” (grinding wheel)
  • G94     Feed in mm / min (or inch / min)
  • G95     Feed per revolution (mm / rev or inch / rev)
  • G96     Constant cutting speed “on”
  • G97     Constant cutting speed “off”
  • G98     Positioning axis signal to PLC
  • G99     Axis offset
  • G100   Polar transformation “off”
  • G101   Polar transformation “on”
  • G102   Cylinder barrel transformation “on”; cartesian coordinate system
  • G103   Cylinder barrel transformation “on,” with real-time-radius compensation (RRC)
  • G104   Cylinder barrel transformation with centerline migration (CLM) and RRC
  • G105   Polar transformation “on” with polar axis selections
  • G106   Cylinder barrel transformation “on” polar-/cylinder-coordinates
  • G107   Cylinder barrel transformation “on” polar-/cylinder-coordinates with RRC
  • G108   Cylinder barrel transformation polar-/cylinder-coordinates with CLM and RRC
  • G109   Axis transformation programming of the tool depth
  • G110   Power control axis selection/channel 1
  • G111   Power control pre-selection V1, F1, T1/channel 1 (Voltage, Frequency, Time)
  • G112   Power control pre-selection V2, F2, T2/channel 1
  • G113   Power control pre-selection V3, F3, T3/channel 1
  • G114   Power control pre-selection T4/channel 1
  • G115   Power control pre-selection T5/channel 1
  • G116   Power control pre-selection T6/pulsing output
  • G117   Power control pre-selection T7/pulsing output
  • G120   Axis transformation; orientation changing of the linear interpolation rotary axis
  • G121   Axis transformation; orientation change in a plane
  • G125   Electronic gearbox; plain teeth
  • G126   Electronic gearbox; helical gearing, axial
  • G127   Electronic gearbox; helical gearing, tangential
  • G128   Electronic gearbox; helical gearing, diagonal
  • G130   Axis transformation; programming of the type of the orientation change
  • G131   Axis transformation; programming of the type of the orientation change
  • G132   Axis transformation; programming of the type of the orientation change
  • G133   Zero lag thread cutting “on”
  • G134   Zero lag thread cutting “off”
  • G140   Axis transformation; orientation designation workpiece fixed coordinates
  • G141   Axis transformation; orientation designation active coordinates
  • G160   ART activation
  • G161   ART learning function for velocity factors “on”
  • G162   ART learning function deactivation
  • G163   ART learning function for acceleration factors
  • G164   ART learning function for acceleration changing
  • G165   Command filter “on”
  • G166   Command filter “off”
  • G170   Digital measuring signals; block transfer with hard stop
  • G171   Digital measuring signals; block transfer without hard stop
  • G172   Digital measuring signals; block transfer with smooth stop
  • G175   SERCOS-identification number “write”
  • G176   SERCOS-identification number “read”
  • G180   Axis transformation “off”
  • G181   Axis transformation “on” with not rotated coordinate system
  • G182   Axis transformation “on” with rotated/displaced coordinate system
  • G183   Axis transformation; definition of the coordinate system
  • G184   Axis transformation; programming tool dimensions
  • G186   Look ahead; corner acceleration; circle tolerance
  • G188   Activation of the positioning axes
  • G190   Diameter programming deactivation
  • G191   Diameter programming “on” and display of the contact point
  • G192   Diameter programming; only display contact point diameter
  • G193   Diameter programming; only display contact point actual axes center point
  • G200   Corner smoothing “off”
  • G201   Corner smoothing “on” with defined radius
  • G202   Corner smoothing “on” with defined corner tolerance
  • G203   Corner smoothing with defined radius up to maximum tolerance
  • G210   Power control axis selection/Channel 2
  • G211   Power control pre-selection V1, F1, T1/Channel 2
  • G212   Power control pre-selection V2, F2, T2/Channel 2
  • G213   Power control pre-selection V3, F3, T3/Channel 2
  • G214   Power control pre-selection T4/Channel 2
  • G215   Power control pre-selection T5/Channel 2
  • G216   Power control pre-selection T6/pulsing output/Channel 2
  • G217   Power control pre-selection T7/pulsing output/Channel 2
  • G220   Angled wheel transformation “off”
  • G221   Angled wheel transformation “on”
  • G222   Angled wheel transformation “on” but angled wheel moves before others
  • G223   Angled wheel transformation “on” but angled wheel moves after others
  • G265   Distance regulation – axis selection
  • G270   Turning finishing cycle
  • G271   Stock removal in turning
  • G272   Stock removal in facing
  • G274   Peck finishing cycle
  • G275   Outer diameter / internal diameter turning cycle
  • G276   Multiple pass threading cycle
  • G310   Power control axes selection /channel 3
  • G311   Power control pre-selection V1, F1, T1/channel 3
  • G312   Power control pre-selection V2, F2, T2/channel 3
  • G313   Power control pre-selection V3, F3, T3/channel 3
  • G314   Power control pre-selection T4/channel 3
  • G315   Power control pre-selection T5/channel 3
  • G316   Power control pre-selection T6/pulsing output/Channel 3
  • G317   Power control pre-selection T7/pulsing output/Channel 3

In conclusion, becoming well-versed on CNC G-Codes, along with other codes associated with CNCs is imperative in this day and age. By having up-to-speed knowledge of CNC codes, you could most definitely set yourself apart from the average Joe.

FANUC Controls Alarms

Fanuc Power Supply Alarm Codes – Alpha Series

Recently we had a customer who was working on troubleshooting a FANUC CNC Power Supply alarm that he had on a machine. He was wondering what the different codes stood for, so we wanted to go ahead and list the different alarm codes for this series. These codes apply to power supplies that start with the following prefixes. The “X”s after the H will be numbered, so an example part number is A06B-6087-H130.

A06B-6081-HXXX
A06B-6083-HXXX
A06B-6077-HXXX
A06B-6091-HXXX
A06B-6120-HXXX
A06B-6140-HXXX
A06B-6110-HXXX

Here is a list of the alarm codes for these series of Power Supply Modules.

AL01: The main circuit power module (IPM) has detected am Error (PSM-5.5,-11)
Overcurrent flows into the input of the main circuit (PSM-15 to –30).

AL02: A cooling fan for the control circuit has stopped.

AL03: The Temperature of the main circuit heat sink has risen abnormally.

AL04: In the main circuit the DC voltage (DC Link) has dropped.

AL05: The main circuit capacitor was not recharged within the specified time.

AL06: The Input Power Supply is abnormal (open phase).

AL07: In the main circuit the DC Voltage at the DC link is abnormally high.

Be sure to check out our article covering FANUC CNC Troubleshooting Frequently Asked Questions here.

A06B-6087-H130 alarm codes

For more information or to get a quote on a FANUC power supply, please call 800-691-8511 or email sales@mroelectric.com.

We also provide repair services for FANUC Power Supplies.

PLC vs. DCS: What’s the difference?

Before we get into the differences of a PLC’s and DCS’s, we need to talk about what each of them are designed to do.

What is a PLC?

A PLC, or Programmable Logic Controller, is a computer that has been adapted to specifically meet the needs of any specific manufacturing process. These devices come in many different shapes and sizes, with many options for digital and analog I/O, as well as protection from high temperatures, vibration, and electrical noise. The invention of the PLC allowed computers to be streamlined into the industrial automation process.

A PLC can be a single device calculating and executing operations, or a rack of different modules may be used to meet whatever your automation system requires. Some of the additional components include processors, power supplies, additional IO, interfaces, and much more.  Every part works together to be able to run open or closed loop operations that are rated at high speed and high precision. Take a CNC machine for example; a PLC would be used to control positioning and motion, as well as torque control. These devices are popular because they are very inexpensive relative to the amount of power and how many hours you get out of them.

 What is a DCS?

A Distributed Control System is an automated control system that streamlines the functionalities of the various devices that are used throughout an entire work space. This type of system uses many different controllers to allow all the machining parts to talk to each other as well as computers that can input parameters and display information such as power usage, speed, and much more. These controllers are distributed geographically across a plant to allow for high-speed communication to the control room. When using different types of modules however, the system may require different communication standards such as Modbus and Profibus. DCS’s started coming to fruition throughout the 1960’s once the microcomputer was brought widespread into the market.

Then what exactly is the difference?

A PLC will probably be used to control a machine that isn’t too complex wheres the DCS can have total control of all the operations in an entire plant. The PLC is preferred in situations where the machine does not have to worry about meeting specific conditions inside the plant. These conditions typically involve operations that may need to stop or restart, as well maintaining precise temperatures. A DCS will be able to take advantage of all the aspects of an automated system, from the machines and sensors to the controllers and computers. An entire DCS is much more expensive than a few PLC’s, but each have their advantages in any given situation and certain automated systems will always require one over the other.

Visit MRO Electric and Supply’s website to see all of our available Programmable Logic Controllers. If we don’t have what you need listed on the site, contact us at sales@mroelectric.com or (800)691-8511 and we will be happy to help.

ATV11-ATV12 Substitution Chart

Below is a chart that shows the direct replacement from ATV11 to ATV12 drives. MRO Electric and Supply carries new & refurbished ATV11 and ATV12 units by Schneider Electric.

ATV11 EUROPAATV11 USAATV11 ASIAATV12
-ATV11HU05F1UATV11HU05F1AATV12H018F1
ATV11HU05M2EATV11HU05M2UATV11HU05M2AАТУ12Н018М2
-ATV11HU05M3UATV11HU05M3AАТУ12Н018М3
-ATV11HU09F1UATV11HU09F1AATV12H037F1
-ATV11PU09F1UATV11PU09F1AATV12P037F1
AN11HU09M2EATV11HU09M2UATV11HU09M2AATV12H037M2
AN11PU09M2EATV11PU09M2UATV11PU09M2AATV12P037M2
-ATV11HU09M3UATV11HU09M3AATV12H037M3
-ATV11PU09M3UATV11PU09M3AATV12P037M3
ATV11HU12M2E--ATV12H055M2
ATV11PU12M2E--ATV12P055M2
-ATV11HU18F1UATV11HU18F1AATV12H075F1
ATV11HU18M2EATV11HU18M2UATV11HU18M2AАTV12H075М2
ATV11PU18M2EATV11PU18M2UATV11PU18M2AATV12P075M2
-ATV11HU18M3UATV11HU18M3AАTV12H075М3
-ATV11PU18M3UATV11PU18M3AATV12P075M3
ATV11HU29М2ЕATV11HU29M2UATV11HU29M2AATV12HU15M2
-ATV11HU29M3UATV11HU29M3AATV12HU15M3
ATV11HU41M2EATV11HU41M2UATV11HU41M2AATV12HU22M2
-ATV11HU41M3UATV11HU41M3AATV12HU22M3

MagneTek GPD503 Fault Codes

Below is a chart with fault codes regarding the MagneTek G3 GPD503 series drives. MRO Electric and Supply offers free evaluations on units. You can find our RMA form on our repair page. Follow us on Twitter @MROElectric for updates on new products and find any deals we may have.

bbExternal Base Block command
Base Block command at multi-function terminal is active, shutting off GPD 503 output (motor coasting). Temporary condition, cleared when input command is removed.
bUSTransmission error
Control data cannot be received normally for longer than 2 seconds.
CALLCommunication ready
Drive is waiting for the PLC to establish communication.
CPF00Transmission error or control function hardware fault (including internal RAM, external RAM or PROM)
Transmission between GPD 503 and remote operator is not established within 5 seconds after the power supply is turned on. (Displayed on the remote operator.)
CPF01Transmission error
Transmission error occurs 2 seconds or more after transmission has first been established.
CPF02Base block circuit failure
GPD 503 failure.
CPF03NV-RAM (S-RAM) fault
GPD 503 failure.
CPF04NV-RAM (BCC, Access Code)
fault
GPD 503 failure. This fault may be caused after changing EPROM chips. Perform a Sn-03 Reset operation to attempt to clear this fault.
CPF05A/D converter failure in CPU
GPD 503 failure.
CPF06Optional connection failure
Improper installation or wiring of option card.
CPF20A/D converter failure
Defective option card.
CPF21Transmission interface card (option) self-analysis function fault
Defective option card. Check option card connector for proper installation.
CPF22Model code fault
Defective option card. Check option card connector for proper installation.
CPF23Mutual-analysis function fault
Defective option card. Check option card connector for proper installation.
EF (blinking)Simultaneous forward and reverse operation commands
Fwd Run and Rev Run commands are both closed for more than 500 ms. Removing one command will allow drive operation.
EF0External fault
GPD 503 is in Stop mode.
EF3Ext. fault signal at term. 3
A fault condition has occurred in the external circuit(s) monitored by the contact providing input to the indicated terminal. If display is steady, GPD 503 is in Stop mode; if display is blinking, the terminal is programmed to allow continued operation after receiving fault input.
EF5Ext. fault signal at term. 5
A fault condition has occurred in the external circuit(s) monitored by the contact providing input to the indicated terminal. If display is steady, GPD 503 is in Stop mode; if display is blinking, the terminal is programmed to allow continued operation after receiving fault input.
EF6Ext. fault signal at term. 6
A fault condition has occurred in the external circuit(s) monitored by the contact providing input to the indicated terminal. If display is steady, GPD 503 is in Stop mode; if display is blinking, the terminal is programmed to allow continued operation after receiving fault input.
EF7Ext. fault signal at term. 7
A fault condition has occurred in the external circuit(s) monitored by the contact providing input to the indicated terminal. If display is steady, GPD 503 is in Stop mode; if display is blinking, the terminal is programmed to allow continued operation after receiving fault input.
EF8Ext. fault signal at term. 8
A fault condition has occurred in the external circuit(s) monitored by the contact providing input to the indicated terminal. If display is steady, GPD 503 is in Stop mode; if display is blinking, the terminal is programmed to allow continued operation after receiving fault input.
ErrConstant write-in fault
Temporary display, in Program mode, indicating that constant setting was not written into EPROM memory.
FAnCooling fan failure
GPD 503 is in Stop mode.
FUFuse blown
DC Bus fuse has cleared. Check for short circuit in output, and check main circuit transistors.
GFGround fault protection
Ground current > approx. 50% of the GPD 503 rated current.
oCOvercurrent
GPD 503 output current exceeds 200% of GPD 503 rated current, or ground fault has occurred, with ground current exceeding 50% of GPD 503 rated current.
oHHeat sink overheated
Fin temperature exceeds 90° C (194° F)
oH2 (blinking)External overheat
External temperature monitoring circuit(s) detected an overtemperature condition and produced an input signal.
oL1Overload
Thermal motor overload protection has tripped.
oL2Overload
GPD 503 overload protection has tripped.
oL3 (blinking)Overload
GPD 503 output torque exceeds the set Overtorque Detection level, but GPD 503 is programmed for continued operation at overtorque detection.
oL3Overload
GPD 503 output torque exceeds the set Overtorque Detection level, and GPD 503 is programmed for coast to stop at overtorque detection.
oPE01kVA constant setting fault
Sn-01 setting is incorrect.
oPE02Constant setting range fault
An-XX, bn-XX, Cn-XX, or Sn-XX setting range fault.
oPE03Constant set value fault
Sn-15 to -18 (multi-function input) set value fault.
oPE04Constant set value fault
PG constant, number of poles, or PG division rate set incorrectly.
oPE10Constant set value fault
Cn-02 to -08 (V/f data) set incorrectly.
oPE11Constant set value fault
One of the following conditions was detected: • Cn-23 > 5 KHz and Cn-24 5 KHz or • Cn-25 > 6 and Cn-24 > Cn-23
ou (blinking)Overvoltage
Internal monitor of DC Bus voltage indicates that input AC power is excessively high, while GPD 503 is in stopped condition.
ouOvervoltage (OV)
Detection level: Approx. 400V for 230V; Approx. 800V for 460V; Approx. 1000V for 575V.
rrRegenerative transistor Failure
Dynamic Braking resistor has failed.
rHBraking resistor unit overheated
Dynamic Braking resistor has overheated.
Uu (blinking)Low voltage (Power UV)
Internal monitor of DC Bus voltage indicates that input AC power is below Undervoltage detection level, while the GPD 503 is in stopped condition.
Uu1 Low voltage (Power UV)Occurs two seconds after detection of low voltage.
Uu2 Low voltage UVControl circuit voltage levels drop below acceptable levels during operation.
Uu3 Low voltage (MC-ANS fault)Main circuit magnetic contactor does not operate correctly.

Yaskawa P1000 Fault Codes

Below is a table of common fault codes found on Yaskawa P1000 units. If problems continue to occur, it may be worth replacing your unit. MRO Electric specializes in Yaskawa repair, as well as unit distribution, if you are interested in obtaining a new or refurbished P1000 unit.

bATDigital Operator Battery Voltage Low - The digital operator battery is low Replace the digital operator battery.
boLBraking Transistor Overload Fault - The wrong braking resistor is installed Select the correct braking resistor.
bUSOption Communication Error - No signal was received from the PLC. Check for faulty wiring.
CE MEMOBUS/Modbus Communication Error - Faulty communications wiring or an existing short circuit.
CEMEMOBUS/Modbus Communication Error - Faulty communications wiring or an existing short circuit.
CPF02A/D Conversion Error - Control circuit is damaged. Replace the control board or the entire drive.
CPF03Control Board Connection Error - Turn off the power and check the connection between the control board and the drive.
CPF06EEPROM Memory Data Error - Turn off the power and check the connection between the control board and the drive.
CPF07Terminal Board Connection Error - Faulty connection between the terminal board and the control board. Turn off the power and reconnect the terminal board.
CPF08Terminal Board Connection Error - Faulty connection between the terminal board and the control board. Turn off the power and reconnect the terminal board.
CPF11Control Circuit Error - Hardware is damaged. Cycle Power. Replace hardware.
CPF12Control Circuit Error - Hardware is damaged. Cycle Power. Replace hardware.
CPF13Control Circuit Error - Hardware is damaged. Cycle Power. Replace hardware.
CPF14Control Circuit Error - Hardware is damaged. Cycle Power. Replace hardware.
CPF15Control Circuit Error - Hardware is damaged. Cycle Power. Replace hardware.
CPF16Control Circuit Error - Hardware is damaged. Cycle Power. Replace hardware.
CPF17Control Circuit Error - Hardware is damaged. Cycle Power. Replace hardware.Control Circuit Error - Hardware is damaged. Cycle Power. Replace hardware.
CPF18Control Circuit Error - Hardware is damaged. Cycle Power. Replace hardware.
CPF19Control Circuit Error - Hardware is damaged. Cycle Power. Replace hardware.
CPF20Control Circuit Error - Hardware is damaged. Cycle Power. Replace hardware.
CPF21Control Circuit Error - Hardware is damaged. Cycle Power. Replace hardware.
CPF22Hybrid IC Error - Hardware is damaged. Cycle Power. Replace hardware.
CPF23Control Board Connection Error - Hardware is damaged. Cycle Power. Replace hardware.
CPF24Drive Unit Signal Fault - The drive capacity cannot be detected correctly. Cycle Power. Replace hardware.
CPF25Terminal Board Not Connected - Hardware is damaged. Cycle Power. Replace hardware.
CPF26Control Circuit Error - Hardware is damaged. Cycle Power. Replace hardware.
CPF27Control Circuit Error - Hardware is damaged. Cycle Power. Replace hardware.
CPF28Control Circuit Error - Hardware is damaged. Cycle Power. Replace hardware.
CPF29Control Circuit Error - Hardware is damaged. Cycle Power. Replace hardware.
CPF30Control Circuit Error - Hardware is damaged. Cycle Power. Replace hardware.
CPF31Control Circuit Error - Hardware is damaged. Cycle Power. Replace hardware.
CPF32Control Circuit Error - Hardware is damaged. Cycle Power. Replace hardware.
CPF33Control Circuit Error - Hardware is damaged. Cycle Power. Replace hardware.
CPF34Control Circuit Error - Hardware is damaged. Cycle Power. Replace hardware.
CPF35Control Circuit Error - Hardware is damaged. Cycle Power. Replace hardware.
CPF40Control Circuit Error - Hardware is damaged. Cycle Power. Replace hardware.
CPF41Control Circuit Error - Hardware is damaged. Cycle Power. Replace hardware.
CPF42Control Circuit Error - Hardware is damaged. Cycle Power. Replace hardware.
CPF43Control Circuit Error - Hardware is damaged. Cycle Power. Replace hardware.
E5SI-T3 Watchdog Timer Error - Data has not been received from the PLC Execute DISCONNECT or ALM_CLR, then issue a CONNECT command or SYNC_SET command.
EF0Option Card External Fault - An external fault condition is present. Check external causes.
EF1External Fault Terminal S1 - An external fault condition is present. Check external causes. Bad S1 Terminal.
EF2External Fault Terminal S1 - An external fault condition is present. Check external causes. Bad S1 Terminal.
EF3External Fault Terminal S1 - An external fault condition is present. Check external causes. Bad S1 Terminal.
EF4External Fault Terminal S1 - An external fault condition is present. Check external causes. Bad S1 Terminal.
EF5External Fault Terminal S1 - An external fault condition is present. Check external causes. Bad S1 Terminal.
EF6External Fault Terminal S1 - An external fault condition is present. Check external causes. Bad S1 Terminal.
EF7External Fault Terminal S1 - An external fault condition is present. Check external causes. Bad S1 Terminal.
EF8External Fault Terminal S1 - An external fault condition is present. Check external causes. Bad S1 Terminal.
ErrEEPROM Write Error - Noise has corrupted data. Cycle power. Correct the parameter.
FAnInternal Fan Fault - Internal cooling fan has malfunctioned. Check for fan operation.
FbHExcessive PID Feedback - PID feedback input is greater than the level set to. Check parameter.
FbLPID Feedback Loss - Check parameter. There is a problem with the feedback sensor.
GFGround Fault - A current short to ground exceeded 50% of rated current on the output side of the drive. Check motor/cables.
LFOutput Phase Loss - Phase loss on the output side of the drive. Check motor/cables.
LF3Power Unit Output Phase Loss 3 - Phase loss on the output side of the drive. Check motor/cables.
nSENode Setup Error - A terminal assigned to the node setup function closed during run.
oCOvercurrent - Output current greater than the specified overcurrent level. Check parameter. Check motor.
oFA01Option Card Fault - The option card connection is faulty. Check connection. Replace hardware.
oFA03Option Card Fault - The option card connection is faulty. Check connection. Replace hardware.
oFA04Option Card Fault - The option card connection is faulty. Check connection. Replace hardware.
oFA05Option Card Fault - The option card connection is faulty. Check connection. Replace hardware.
oFA06Option Card Fault - The option card connection is faulty. Check connection. Replace hardware.
oFA10Option Card Fault - The option card connection is faulty. Check connection. Replace hardware.
oFA11Option Card Fault - The option card connection is faulty. Check connection. Replace hardware.
oFA12Option Card Connection Error - The option card connection is faulty. Check connection. Replace hardware.
oFA13Option Card Connection Error - The option card connection is faulty. Check connection. Replace hardware.
oFA14Option Card Connection Error - The option card connection is faulty. Check connection. Replace hardware.
oFA15Option Card Connection Error - The option card connection is faulty. Check connection. Replace hardware.
oFA16Option Card Connection Error - The option card connection is faulty. Check connection. Replace hardware.
oFA17Option Card Connection Error - The option card connection is faulty. Check connection. Replace hardware.
oFA30Option Card Connection Error - The option card connection is faulty. Check connection. Replace hardware.
oFA31Option Card Connection Error - The option card connection is faulty. Check connection. Replace hardware.
oFA32Option Card Connection Error - The option card connection is faulty. Check connection. Replace hardware.
oFA33Option Card Connection Error - The option card connection is faulty. Check connection. Replace hardware.
oFA34Option Card Connection Error - The option card connection is faulty. Check connection. Replace hardware.
oFA35Option Card Connection Error - The option card connection is faulty. Check connection. Replace hardware.
oFA36Option Card Connection Error - The option card connection is faulty. Check connection. Replace hardware.
oFA37Option Card Connection Error - The option card connection is faulty. Check connection. Replace hardware.
oFA38Option Card Connection Error - The option card connection is faulty. Check connection. Replace hardware.
oFA39Option Card Connection Error - The option card connection is faulty. Check connection. Replace hardware.
oFA40Option Card Connection Error - The option card connection is faulty. Check connection. Replace hardware.
oFA41Option Card Connection Error - The option card connection is faulty. Check connection. Replace hardware.
oFA42Option Card Connection Error - The option card connection is faulty. Check connection. Replace hardware.
oFA43Option Card Connection Error - The option card connection is faulty. Check connection. Replace hardware.
oFb00Option Card Connection Error - The option card connection is faulty. Check connection. Replace hardware.
oFb01Option Card Error - The option card connection is faulty. Check connection. Replace hardware.
oFb02Option Card Error - The option card connection is faulty. Check connection. Replace hardware.
oFb03Option Card Error - The option card connection is faulty. Check connection. Replace hardware.
oFb11Option Card Error - The option card connection is faulty. Check connection. Replace hardware.
oFb12Option Card Connection Error - The option card connection is faulty. Check connection. Replace hardware.
oFb13Option Card Connection Error - The option card connection is faulty. Check connection. Replace hardware.
oFb14Option Card Connection Error - The option card connection is faulty. Check connection. Replace hardware.
oFb15Option Card Connection Error - The option card connection is faulty. Check connection. Replace hardware.
oFb16Option Card Connection Error - The option card connection is faulty. Check connection. Replace hardware.
oFb17Option Card Connection Error - The option card connection is faulty. Check connection. Replace hardware.
oFC00Option Card Connection Error - The option card connection is faulty. Check connection. Replace hardware.
oFC01Option Card Error - The option card connection is faulty. Check connection. Replace hardware.
oFC02Option Card Error - The option card connection is faulty. Check connection. Replace hardware.
oFC03Option Card Error - The option card connection is faulty. Check connection. Replace hardware.
oFC11Option Card Error - The option card connection is faulty. Check connection. Replace hardware.
oFC12Option Card Connection Error - The option card connection is faulty. Check connection. Replace hardware.
oFC13Option Card Connection Error - The option card connection is faulty. Check connection. Replace hardware.
oFC14Option Card Connection Error - The option card connection is faulty. Check connection. Replace hardware.
oFC15Option Card Connection Error - The option card connection is faulty. Check connection. Replace hardware.
oFC16Option Card Connection Error - The option card connection is faulty. Check connection. Replace hardware.
oFC17Option Card Connection Error - The option card connection is faulty. Check connection. Replace hardware.
oFC50Option Card Error - The option card connection is faulty. Check connection. Replace hardware.
oFC51Option Card Error - The option card connection is faulty. Check connection. Replace hardware.
oFC52Option Card Error - The option card connection is faulty. Check connection. Replace hardware.
oFC53Option Card Error - The option card connection is faulty. Check connection. Replace hardware.
oFC54Option Card Error - The option card connection is faulty. Check connection. Replace hardware.
oFC55Option Card Error - The option card connection is faulty. Check connection. Replace hardware.
oHHeatsink Overheat - Check ambient temperature. Check parameter setting.
oH1Heatsink Overheat - Check ambient temperature. Check parameter setting.
oH4Motor Overheat Fault (PTC input) - Check ambient temperature. Check parameter setting.
oH5Motor Overheat Fault (NTC input) - Check ambient temperature. Check parameter setting.
oL1Motor Overload - Load heavy. Increase accel or decel time.
oL2Drive Overload - Load heavy. Increase accel or decel time.
oL3Overtorque Detection 1 - current has exceeded the value set for torque detection. Check parameter setting.
oL4Overtorque Detection 2 - current has exceeded the value set for torque detection. Check parameter setting.
oL7High Slip Braking oL - Use braking resistor. Reduce decel time.
oPrOperator Connection Fault - The external operator has been disconnected from the drive.
ovOvervoltage - Deceleration time is too short and regenerative energy is flowing from the motor into the drive. Increase decel time.
PFInput Phase Loss - Drive input power has an open phase or has a large imbalance.
rFBraking Resistor Fault - The resistance of the braking resistor is too low.
rHDynamic Braking Resistor - Deceleration time is too short and excessive regenerative energy is flowing back into the drive.
rrDynamic Braking Transistor - The braking transistor is damaged. Cycle power to the drive and check for reoccurrence of the fault.
SCIGBT Short Circuit or Ground Fault - IGBT failure. Cycle power to the drive and check for reoccurrence of the fault.
SErToo Many Speed Search Restarts - Parameters related to Speed Search are set to the wrong values.
TdETime Data Error - An error has occurred in the real-time clock. Replace digital operator.
THoThermistor Disconnect - The thermistor that detects motor temperature has become disconnected.
TIETime Interval Error - An error has occurred in the real-time clock. Replace digital operator.
TIMTime Not Set - Set time in parameter o4-17.
UL3Undertorque Detection 1 - Current is below the minimum set value. Check parameter setting.
UL4Undertorque Detection 2 - Current is below the minimum set value. Check parameter setting.
UL6Motor Underload - Current is below the minimum set value. Check parameter setting.
UnbCCurrent Unbalance - Current flow has become unbalanced. Check for damaged transistors.
Uv1Undervoltage - DC Bus Undervoltage. Check parameter setting. Input phase loss.
Uv2Control Power Supply Undervoltage - Voltage is too low for the control drive input power. Ride-through power loss.
Uv3Soft Charge Circuit Fault - Precharge relay or resistor fault. Bad precharge.
Uv4Gate Drive Board Undervoltage - Voltage drop in the gate drive board circuit. Cycle power to see if fault reoccurs.
voFOutput Voltage Detection Fault - Problem detected with the voltage on the output side of the drive.
vToLVT Overload - The output current of the drive has been elevated for a set length of time.

Encounter a fault code on your Yaskawa P1000 drive?

MRO Electric is here to guide you through the process of identifying and rectifying any issues, with an extensive selection of Yaskawa products and top-tier repair services to choose from.