The Best U.S. States for Storm Chasers

Title image of the best U.S. States for Storm Chasers.

If “fear” is not in your vocabulary and “danger” is your middle name, storm chasing may be right up your alley. For individuals who are fearless enough to add “Storm Chaser” to their resume, MRO Electric determined the best states to keep a pulse on hurricanes, tornadoes, and tropical storms in the country. 

In this study, we ranked the top 50 states across the country to chase cyclones based on several factors, including the number of tropical storms, hurricanes, and tornadoes within the past 5 years, average nightly price of temporary accommodations, average travel expenses, and more. Read on to find out if you’re in a hotspot for hurricanes or if you’ll have to venture a little further out to enter the eye of the storm.

Taking the Nation by Storm: The 10 Most Turbulent States

Map depicting the top 10 U.S. states for storm chasing.

Storm chasers looking for a chance to be in the middle of the action should plan a trip to the southern and southeastern regions of the U.S. Our friends down south made up 8 of the top 10 states, making it the place to be for storm chasers all over the nation.

Florida is undoubtedly the place to be for any aspiring storm chaser. The Sunshine State comes in first on our list with a storm chaser score of 80.23. Florida reports more days of tropical storms than any other state in the country and frequently faces other natural disasters, like hurricanes and tornadoes. Average airfare to Florida is also cheaper than any other U.S. state, making it accessible to storm chasers who plan on trekking from parts unknown to catch a glimpse of the carnage.

If you feel tempted to chase after terrible tornadoes, your best bet might be to travel to Illinois or Kansas. These two states are the only states in our top 10 not located in the southern or southeast part of the country. Interestingly, they are also the only states in our shortlist to have reported impacts by only one of the storm types. Their impact from tornadoes being so exceptionally high was enough to put the pair in the top 10.

The Danger Zone: States That Get Hit the Most

Map depicting the U.S. states that get hit the most by storms.

Texas had the highest number of storms at nearly 200 impacts in the past five years alone. When it comes to the sheer number of natural disasters, no one else comes close to touching the Lonestar State. In five years, Texans have had to grapple with 158 days of tornadoes, 7 days of hurricanes, and 12 days of tropical storms. If you’re a veteran storm chaser looking for a challenge, remember everything’s bigger in Texas.

Even though Illinois doesn’t even receive a gold, silver, or bronze medal for states most frequently hit by storms, it definitely deserves an honorable mention. With only reporting impacts from one of the three storm types, it is the 4th state overall to get banged up regularly by storms. In just five years, it has reported nearly 20 tornadoes on average a year.

Though Texas was the state to experience storms the most frequently beyond any doubt, Georgia takes a surprising second for most areas hit by storms. Geographically, Georgia shares borders with four states on our top 10 states with the most areas hit by storms list. Residents in Georgia have to deal with disasters coming from every direction since Alabama, Florida, North Carolina, and South Carolina are more than happy to share some of the action with them.

Closing Thoughts

If you’re no stranger to danger and love the thrill of hunting down disaster, storm chasing might be the perfect hobby for you. Storm chasers who are up for a challenge and a little traveling should head down south if they really want to test their mettle against some of the country’s most terrifying storms and natural disasters. Just remember to keep safety and the cost of accommodation in mind.

Storms pop up in various regions and cause disruptions to our natural way of living. Storm chasers are crucial in tracking the patterns and reporting the conditions of these storms. More often than not, one common occurrence with these harsh weather conditions is power outages across hundreds of neighborhoods. That’s why MRO Electric is committed to ensuring people across the country have access to trustworthy electric and power systems they can depend on during an emergency.

Full Data

That wraps up our state ranking for The Best States for Storm Chasers. Interested in diving deeper into the numbers for all of the states, or wanting to see how your state stacks up if it’s not listed within the above map? 

We’ve compiled our full data study for all 50 U.S. states and the District of Columbia analyzed into the interactive data table below. Search for the state you call home or click on the heading of each column to sort by that category!

Methodology 

To find out the best states for storm chasers, we began with a list of all 50 of the U.S. states and the District of Columbia. We collected data on 10 factors that pertain to or impact storm chasers. We assigned states with a score of 0-5 for each factor, with a score of 5 representing the most favorable conditions. We determined each state’s total score from the total of its individual factor scores, which were weighted according to their impact on storm chasers. Individual factor scores were then added together to give each state a final score from 0-100. Higher scores indicated states that are better for storm chasers. Details on our ranking factors can be found below.

Ranking FactorWeightSource
Number of Days with Hurricanes Reported (in last 5 yrs)1.75NCEI
Number of Days with Tornadoes Reported (in last 5 yrs)2.75NCEI
Number of Days with Tropical Storms Reported (in last 5 yrs)2.75NCEI
Number of County/Zone Areas Affected by Hurricanes1.75NCEI
Number of County/Zone Areas Affected by Tornadoes2.75NCEI
Number of County/Zone Areas Affected by Tropical Storms2.75NCEI
Average Price of Airbnb/Hotels1.50Airbnb
Average Gas Costs by State1.50AAA
Average Airfare Into a State1.00BTS
Average Car Rental Fees1.50Kayak

Covid’s Effect on Automation

The COVID-19 pandemic has had a significant impact on the industrial automation industry, with both positive and negative effects.

The Positive

On the positive side, the demand for automation has increased as companies look for ways to reduce the number of workers on the factory floor and minimize the risk of virus transmission. Automation can help to maintain social distancing guidelines and reduce the need for close contact between workers. In addition, many companies have turned to automation to increase the efficiency and speed of their operations in the face of supply chain disruptions and other challenges caused by the pandemic. According to a report by the Association for Advancing Automation (A3), “the COVID-19 pandemic has spurred increased interest in automation as a means to reduce the risk of infection, improve efficiency, and maintain or increase production levels in the face of supply chain disruptions and other challenges.”

The Negative

On the negative side, the pandemic has disrupted the supply chain for automation equipment and components, leading to delays and shortages. Many manufacturers and suppliers have had to deal with disruptions to their operations due to lockdowns and other measures taken to control the spread of the virus. This has made it more difficult for companies to obtain the equipment and components they need to automate their operations. According to the A3 report, “the COVID-19 pandemic has disrupted the supply chain for automation equipment and components, leading to delays and shortages.”

The pandemic has also had a negative impact on the financial performance of many companies in the industrial automation industry. Many businesses have had to deal with reduced demand and lower revenues due to the economic downturn caused by the pandemic. This has led to a decrease in investment in automation and a slowdown in the growth of the industry. According to a report by the International Association of Automation (IAA), “the COVID-19 pandemic has had a negative impact on the financial performance of many companies in the industrial automation industry, leading to a decrease in investment in automation and a slowdown in the growth of the industry.”

Conclusion

Overall, the COVID-19 pandemic has had a mixed impact on the industrial automation industry. While the demand for automation has increased in some sectors, the disruptions caused by the pandemic have led to delays and shortages in the supply chain and have had a negative impact on the financial performance of many companies in the industry.



How Old is “Too Old”?

Upgrading Vs Swapping



When it comes to the world of automation controllers, it is important that a system perform as long as it possibly can. After all, what good is buying a new machine when a company has to shell out millions every few years for a full replacement? That being said, like all things, these systems have their own expiration date. Of course, that expiration time is not an exact number and very much depends heavily on multiple factors. Depending on the facility, management, operator, etc., an entire setup can potentially last up to 30 years if well maintained. In fact, while we are in the year 2022, there are numerous companies today that are still using equipment from the 1980’s with some going back further than that!

“When Should I Upgrade?”

Upgrading your system is a large undertaking for any company. Not only is the cost to upgrade something to really consider. Businesses also have to account for operations, deadlines, and return on investment (ROI). When thinking about upgrading your equipment, some important factors to think about include:

Production Challenges
If you are seeing a higher volume in sales and your current setup cannot meet the rise in demand, then it may be time to consider upgrading. Newer machines can output product at a faster rate.

Labor
Labor is often one of the largests costs when it comes to business operations. Not only are we talking about the base wage of an employee, but also the cost of training. Some fields of work have high turnover rates which makes having to hire and train new employees a constant and expensive venture. Some uprgrades are available that now automate certain tasks once perfomed by employees.

Cost
While the upfront cost might end up being quite a steep price to pay. In the long term, upgrading your equipment can give a business the competitive edge it needs to produce products faster, higher quality, and more efficiently thus saving money on the back end.

Expansion
As a company expands, the prospects of upgrading and automating certain aspects of the production is can not only help saving money in any long-term costs that comes with expansion, but also maintain quality control as the company grows.

Waste
The production of waste is not only an issue that comes with potential environmental and legal rammifications, but also with economical ones as well. The accountability of letting environmental waste go unchecked has long-lasting and very expensive repurcussions. Upgrading to newer equipment can also mean a reduction in waste production as well.

Better Precision
Newer equipment also tends to be more precise with higher accuracy in manufacturing which aids in the produciton of more complex components.

“What if Upgrading Isn’t Worth It?”

As previously mentioned, the greatest obstacle when it comes to upgrading is the upfront costs. Usually companies with enough capital can make these upgrades. Some companies with more limited capital may make incremental upgrades. However, there are plenty of businesses out there that simply do not have the sort of capital needed to commit to upgrading their equipment. This is especially challenging when a company’s equipment suddenly breaks down and needs replacing. The dire need for operations to continue means small turn around times (if any) for machines to be shut down. While this is happening, a company can lose huge sums of money from not having product to sell. Therefore many companies want whatever the quickest turn around time possible to get production back up.

One alternative solution for companies with smaller budgets is to just buy refurbished and certified pre-owned equipment from vendors. The advantage of this being that most components are able to be hot swapped. This allows you to just purchase and replace the broken part and not have invest in completely new machinery. Another advantage of this is that a company can save a lot of time and money by not having their technician needing to learn an entirely new system. Especially when going from a setup that was installed 30 years ago to the newest one.

The End Cost

It is important to take note that when replacing with pre-owned/used parts, these are in fact; used. It is good to make sure a refurbished vendor tests the product before selling it. Some vendors offer, warranties and have return policies in place. That being said, you’re still working with old equipment. The lifespan of used or refurbished items will not have the same longevity as new parts. This means the cost you were hoping to save by a simple part replacement may again end up costing you more down the road.

Ultimately, it is up to the owner to weigh the pros and cons. Afterwards they have to think about long vs short term solutions and if the cost is worth it.

NHL Teams that Travel the Most

There’s nothing more thrilling than attending a sporting event to watch your favorite team take on a tough opponent. Home games are a blast, but traveling to a new city to watch your team can be an equally exhilarating experience. For fans, traveling for one game can be a whirlwind to plan, but athletes are traveling multiple times a week – especially hockey players. 

NHL players have many games a week, and several teams are based outside of the U.S., meaning they spend a lot of time on the road during the season. There’s a lot that goes into getting your favorite players on the ice on time. On average, your favorite NHL team travels nearly 50,000 miles per season!  

For this study, MRO Electric’s resident hockey fanatics analyzed how many miles each team is slated to travel based on the upcoming season.

Methodology

To gear up for hockey season (and for this study), we reviewed each team’s schedule on ESPN to see where everyone will skate off to. Next, we used Google Maps to calculate the mileage between each hockey game of the 2022-2023 season for every team in the league. This study assumes that each NHL team is driving to and from each game and doesn’t need to travel elsewhere for personal reasons. We measured the travel time back to home ice, meaning that if a team spent multiple games on the road, we calculated the distance between each venue on the road and then the trip home. Finally, we found which teams travel the most and which individual games require the most miles to get from point A to point B.

Top 10 NHL Teams Traveling the Most Miles in 2022-2023 Season

If your favorite hockey team is a part of the pacific division, chances are your star players are traveling far and wide to push the puck. Pacific division NHL teams account for seven of our top 10 most traveled teams. The majority of teams in this division have at least a handful of games that require trekking over 2,000 miles and several more that clock in at just over 1,000 miles. Not only that, but the league’s average distance for an away game overall is just over 19,000 miles. Talk about going the distance!

The most well-traveled team in the league is Edmonton’s own Oilers. The Oilers claim the unofficial title of the NHL’s top road warriors, traveling over 5,000 more miles than any other hockey team in any division. The Edmonton Oilers have nine games that require them to travel 2,000 miles or more to get to. Oiler fans in the Sunshine State who support them on November 12th will have traveled nearly 3,000 miles to get there.

Another Pacific dream team to go the distance is the Anaheim Ducks. On October 18th, Anaheim’s beloved Ducks travel over 2,000 miles to face off against the New York Islanders. New York is a fighting city and the Anaheim Ducks are a tough bunch to tussle with. Fun fact: these mighty mallards came in second place last season for most fights on the ice. Can you blame them though? Any hockey team that is jet-lagged is bound to be a little crabby.

Many of the league’s east coast teams have the luxury of being some of the least-traveled hockey teams, but one unlucky franchise has to hit the road more than the others. The only team in the NHL’s metro division to make our top 10 list was the Carolina Hurricanes. Caniacs (that’s Carolina-speak for huge Hurricanes fans) have to travel nearly 2,800 miles from Raleigh to San Jose to support the Cardiac Canes at their most distant away game of the season.

Hitting the Road: Games with the Highest Mileage

Teams on the road travel great distances to compete against each other on enemy territory. Many teams in the league will have a few consecutive games away from having home-ice advantage. Not only is it tough to be away from home for extended periods of time, but it’s even worse when you’re getting booed for being on the wrong team. 

If you ever question your favorite team’s commitment to the game, consider that the distance the NHL would travel as a whole this season would take you around the globe 63 times and from LA to NY 569 times! Truthfully, NHL teams go through many hoops to play their hearts out game after game. For fans wondering how far their teams will go to put on a good show, here’s a closer look at some games that require the most travel from rink to rink.

We’re certain that the New York Rangers will not be feeling the love during Valentine’s day week this hockey season. The Rangers have to travel just over 3,000 miles after rallying against Raleigh’s Carolina Hurricanes to face off with the Vancouver Canucks on February 15th. That’s a lot of pressure– winning against the Canucks could mean breaking a few fans’ hearts in Vancouver. Oh well, all is fair in love and hockey.

The most gas-guzzling NHL game of the regular season takes place in the Emerald State, where the Boston Bruins will take on the Seattle Kraken. The Bruins will have to travel a total of 3,006 miles to take a shot at Seattle. The only two hockey games on our list of games with the highest mileage not involving our friends in the Great White North both feature Boston in some way. In December, the Los Angeles Kings will journey 2,985 miles to square off with the Bruins in Bean Town.

Closing Thoughts

Whether your favorite hockey team has the home-ice advantage or not, cheering them on against a fierce competitor can be an emotional whirlwind. The truth is, your commitment to your favorite team means a lot to them– especially when they’re in enemy territory. NHL hockey players travel between cities and sometimes countries multiple times a week to make it to the game. There are many moving parts that go into making sure your favorite players safely get from venue to venue, so consider that next time you cheer them on against a tough rival team!


In the same way, your favorite NHL team has a lot of moving parts and players, your business needs a solid system and plan to make it all happen. As a premier factory automation wholesale distributor, MRO Electric can help your business by working with the best manufacturers to get you the best parts to get the job done.

Diversity in the Engineering Field

Opening Summary

The last decade has seen a huge shift in the way diversity plays a role in companies, with the lessons of diversity and inclusion being taught at more company meetings, and more team-wide open discussions. Often the question of: “Why should there even be conversations about diversity in the workplace?”, comes up in professional spaces. It is easy to dismiss the concepts of diversity and inclusion as simple ‘virtue signaling’ and there are numerous companies performing “diversity theatre”. However, when you get past the superficial and performative layers, there are valid points to make in regards to workplace diversity. The topic of diversity is very controversial, ironically invoking a rather diverse range of emotions and thoughts. The concept of diversity in itself is more complex than just “Oh hey, this person looks different from me so I need to work with them”.

This article will attempt to cover various issues among three demographics. While the issues being written are NOT the only obstacles facing these groups, they are the most common ones.

LGBTQ in the WorkPlace

For decades members on the LGBTQ community have experienced many obstacles in the workplace in regards to discrimination. While this form of discrimination is found across multiple industries, engineering fields such as automotive are historically known to promote that form of discrimination. This has speculated to be due to in part there being a “car guy” culture within the work environment. In an article written by Jeremy Alicandri for Forbes, Alicandri notes that a Ford Foundation-backed study found that 1 in 4 LGBTQ employees experienced discrimination or bullying in the workplace. Another study by Out Leadership, found that 47 percent LGBTQ employees experienced micro aggressions that resulted in 70 percent deciding to cover up or mask their LGBTQ characteristics.

So the question remains: Why is it important to change the work place culture?

The same Forbes article addresses the issue through a pragmatic lense. That is simply that by not including and changing the culture for LGBTQ members, a company is inevitably going to lose money. This comes in the form of both employees and consumers.

From an employment perspective, the loss of valuable talent due to discrimination in the workplace is a huge oversight for a company to make. Potentially a company could lose out on something innovative that would have yielded sizable profits all because they allowed for discrimination to happen in the work place. One example of this is of Dr. Lynn Conway, professor ameritas at Michigan State University. Conway began employment at IBM in 1964, but was fired in 1968 after it was discovered that she was transgendered. Dr. Conway speculates that it was out of fear of the company’s public image if it were discovered that they had a transgendered employee. She was hired by several other organizations (Xerox, MIT, and even the Dept of Defense) over the years and became the top scientists in her field, contributing to innovative technology that are still used in computers today.

Women in Engineering

In an online publication from the University of California, Riverside, the number of women currently working in the field of engineering is about 14 percent. This is a big leap from the 1980’s when the numbers were closer to 5.8 percent. While the number of female employees is on the rise in the field of engineering overall, there are still barriers and challenges that face women in the work place. One of the challenges that women still face are having enough role models in the work force that younger employees can look up to for guidance. Just as much as women are entering the engineering field, many women are leaving just as fast because companies are not flexible. Therefore it still leaves a huge disparity in the number of women in higher managment and leadership positions that more junior female employees can look up to when entering the engineering field.

Another issue is that while more companies are starting to implement policies and changes that can accomodate women in regards to allowing them to be able to balance their work with their family responsibilities, there are still a lot of companies that don’t have effective accomodations for things like maternity leave and needing to leave work for childrent-related issues.

Racial Diversity in Engineering

According a report by the Stem Education Journal (SEJ), STEM (Science, Technology, Engineering, Mathematics) is currently the fastest growing occupational cluster in the US, with engineering being second only to the medical field. However, while a lot of companies are calling for racial diversity, at the same time positions in the STEM field continue to stagnate due to long employee retention by companies. While this is generally seen as a positive in regards to companies valuing their employees, at the same time it is presenting the issue of majority demographic within companies.

A 2019 report released by Georgetown University, found that despite making up a third of the population, the number of Black and LatinX people only made up about 14 percent of employees in the engineering field, while Asians made up 16 percent, and White employees making up 61 percent. Additionally, report goes on to cover the income disparity between racial groups with Black and LatinX employees making 15-18 percent above the average of a bachelor degree holder, while Asian and White employees make 61 – 71 percent more. Further research had also shown that in order to close the wage gap, Black and LatinX employees generally have to gain a graduate degree to make close to what Asian/White employees would make with undergraduate degrees.

One contributing factor begins in high schools where Black and LatinX students attend schools that do not have access to classes that would ideally set them on right career path towards engineering. One example the study shows is that the subject of Calculus tends to be absent in many high schools that are predominantly Black and LatinX students. To address this inequity, some robotics programs like the one in University of Michigan, are changing the curriculum to push Calculus back to later years and starting Freshman off in more linear-based math such as Algebra, as it is something that is more commonly accessible in public high schools.

Conclusion

In his 2005 book, “The World is Flat: A Brief History of the Twenty First Century”, economist and author, Thomas L. Friedman covers the economic “flattening of the world” or more simply, globalization. Friedman highlights the inevitibility of interconnectivity between countries and cultures, which the world has seen more of nearly two decades after his book’s release. This highlights the importance of diversity from a pragmatic lense.

An article from UNC Pembroke, highlights a study done by the World Economic Forum (WEF) on the growth of a business from diversity. Research from the study showed that companies that had higher averages for innovation also had higher diversity averages as opposed to companies with lower diversity averages. Gender diverse groups tend to out perform more gender homogenous groups by 50 percent. The article also cites a study by McKinsey and Company, showing that companies that scored in the to 25 percent for racial/culture diversity also were 25 – 36 percent more likely to bring in larger financial returns.

Ultimately what these studies are pointing to is that for a company wanting to play the long game, adapting to cultural shifts as opposed to getting locked into culture battles, is better for business.

Micromaster 420

Siemens Micromaster 420 Faults and Alarms

Siemens Micromaster 420: Troubleshooting Faults and Alarms

A blog we posted earlier this week about the Micromaster 420 troubleshooting referenced the Faults and Alarms list for the Micromaster series, so we decided that it would make sense to make the list of Micromaster 420 Faults and Alarms directly available. This is from the corresponding manual for the Micromaster 420 series, but it is buried within the manual which most people most likely don’t even have. Hopefully, this helps with your troubleshooting of Siemens drive fault codes and alarms.

Be sure to also check out our list of Siemens Micromaster 440 fault codes and our article touching on Siemens Simodrive E/R Module Fault Troubleshooting, along with other Siemens series coverage.

If you’re looking to purchase a Siemens Micromaster drive, view our 420 Micromaster Drives in stock. For more information or to request a quote, please call 800-691-8511 or email sales@mroelectric.com. We also provide pre-priced Micromaster 420 Repairs.

Read More

Digitalizing Automation For the Future

A Brief History

For the longest time, automation has always been the end-goal process when it comes to industrialization. That is that the user can quickly and efficiently complete a process repeatedly. Whether that process involves production or maintenance, the last two decades have seen a monumental rise in digitalization across numerous industries. Of course, digitalization is not a stranger to the world of automation machinery (and it would be incorrect to conflate that one is the opposite of the other). As it stands, all of the major industrial companies have some form of proprietary software that they use to automate their machinery and it’s been that way for several decades. However, in research done by Forrester, 77% of businesses today still rely on a paper process, with only 63% still using spreadsheet programs. Ultimately, this makes it more difficult to keep up with customer demands, and really wanting for a more streamlined process.

Automation and Digitalization

What is Automation?

Automation physically performs a process without the constant need of a human operator. Its tasks are dedicated by a group of rules preset by an operator usually in the form of either script commands or more robust software pending on what the task is.

What is Digitalization?

Digitalization is basically the process of taking a hard copy of something and converting it into a digital format. This could be anything from a worded manual or even a photo. Digitalizing is crucial to automation because it is how an automated process interprets data to commit to a function. The last few decades have seen a progression in the control of industrial automation from manual to digital.

The Possibilities

One example of how digitalization can streamline automation is through the way tasks and functions are being given to a piece of industrial equipment. For the longest time, equipment like automoted robots in manufacturing have been relying on external devices like PLCs (Programmable Logic Controllers) to output individual commands. These are all multiple components linked together on a bus and then connected to the drive and other components. This is the current setup for a lot of industrial and manufacturing operations.

While this setup does get the job done, it does present a few issues.

For starters, communication is one of the most important things when automizing. When multiple components come into play, there is always the chance of communication issues between devices. This can be attributed to various issues, like conflicting software between the devices or even simply how something is connected. There is also the issue of troubleshooting and trying to figure out the cause of an existing issue. With digitalization, instead of having a bunch of devices trying to talk to one another, there can be just one fully-integrated device using a single software. Having instant diagnostics would also cut down on troubleshooting time.

A Little Thing Called BIM

One piece of digitalization that could potentially change the way automation works is actually a technology that is becoming more prominent in the field of architecture and engineering called BIM (Building Information Modeling). What is BIM? In short, BIM is a digitalized way to create and manage data in the design, construction, and operation of products. Often it is used by architects, engineers, and construction working on sophisticated buildings. It allows for multiple teams to collaborate in real-time as they are working on a project. The same technology could virtually model the layout of a factory and could share accurate data in real-time across multiple teams.

Imagine an entire manufacturing setup being represented by a virtual model that is constantly sharing diagnostics of the equipment. If something were to break down or get faulty, the diagnostic could alert the technician, and using the virtual model, they can get a better visual representation of what is causing the issue and where it can be found. Simultaneously an alert can be sent out across different departments so that different teams can quickly communicate and come up with solutions to the problem. This in turn saves time on labor and the cost of troubleshooting.

Final Thoughts

Automation has always been and continues to be the end goal for many companies across multiple industries. With digitalization allowing for the process to function more autonomous than ever, it seems we are moving further along into a world of unfettered interconnectivity. As the digitalization of automation continues to progress, the acknowledgment of anxiety over its effects on human employees cannot be ignored. If everything is fully automated and more streamlined, what place does the employee have?

One issue that we need to consider is how automation will affect socioeconomics. From an optimistic point of view, one could argue that the present automation has already done away with a lot of the ‘human element’, and the margins of laying off workers would be small, especially when a company could train up employees to learn the technology.

On the other hand, we’re talking about a situation where only a handful of positions are available. Often, a company would rather onboard someone who already has experience rather than train an existing employee. Automation could pessimistically mean that both low-skilled and specialized employees both have a hard time finding work. On one end when most of the general tasks can be automated why would a company need to hire humans? Not to mention that exists a ceiling with just how many specialized jobs exist versus how many specialized employees compete to fill those seats. This is an existing issue we can see across multiple tech sector positions today.

What the solution is, remains to be seen. While the advancement of automation is crucial to productivity, it is something that should be treated cautiously in regards to how it affects the working person.