Factory Automation and Machine-to-Machine (M2M) Advances

fanuc robotics

 Factory Automation and Machine-to-Machine (M2M) Advances

As technology evolves, automation has become more and more prevalent in the factory automation space. Machine-to-machine enables private and exclusive communication and control over sensors, cameras, industrial equipment, robotics (check out our FANUC Robotics parts) and essentially anything else. Manufactory facilities and several other remote systems are managed much more easily with machine-to-machine advances in communication.

Initially, with industrial and enterprise applications as a focal point, machine-to-machine communication was easily defined and used for a limited amount of tasks. Nowadays, there are many fewer limitations associated with the machine-to-machine communication.

Pressured to lower costs and improve speed and overall efficiency, factory automation companies are often in an uncomfortable spot. While using high-end, sophisticated automation applications and tools, more real-time data must be obtained to streamline more of the day-to-day operations and tasks. Implementing machine-to-machine solutions can help with operational efficiency gains, time and cost savings, and performance optimization.

From a cellular standpoint, machine-to-machine solutions enable integration of environmental controls into a single system, and to unify with security and video surveillance systems. All and all, companies are able to secure several properties from anywhere they wish to, even as they fine-tune power efficiency and decrease operating expenses.

Due to the immense increase of machine-operated plants in companies who rely on keeping critical assets and functions performing optimally, several companies are exploring options associated with a machine-to-machine communication. Of the many benefits, the fact that it’s able to deliver remote access to gather real-time process data to cut operation costs is often one of the most well-recognized. The ability to identify and rectify production line faults, or design and implement preventative maintenance strategies, for example, is what machine-to-machine communication is designed for.

Involving data exchange over the telephone line or via the internal with machines, plants, computers for issue detection, diagnostics, and repair, teleservice is an imperative aspect of machine-to-machine communication. Offering an optimal answer to diagnose distant systems, teleservice is becoming more and more popular and is not going anywhere.

Telecontrol, another aspect of machine-to-machine communication, deals with connections of distant process stations to one or more central control systems. Many networks, both public and private,  can be used for communication used to control. For these diverse applications and businesses, cellular M2M connectivity can address many business and technical challenges and enable important benefits.

MRO Electric and Supply has new and refurbished FANUC parts available. We also offer repair pricing. For more information, please call 800-691-8511 or email sales@mroelectric.com.

Additionally, M2M systems can be designed to withstand harsh environmental conditions and easily manage and control connected devices across the country or around the world. M2M systems provide flexibility to move equipment as needed, or bring up and tear down systems quickly for temporary or seasonal deployments. By using modern M2M management and application platforms, and taking care to choose platforms designed to meet real-world requirements, organizations can take full advantage of the M2M revolution.

In case you were wondering, machine-to-machine systems are indeed designed to withstand environmental conditions and easily control connected devices in any location. They are flexible and can move equipment with ease. In order to use machine-to-machine communication optimally, look into management and application platforms. Click here to view our article on IT and Robotics.

Gathering Information Before Considering a Repair

Downtime is inevitable when it comes to machine automation. When production stops, orders will likely stack up quickly, hitting start on the ‘profits lost’ clock. After the failed part is identified, many machine automation professionals would lean towards shipping the flawed part to get serviced as soon as humanly possible. While MRO Electric and Supply appreciates the business, we want to ensure our customers are as well-informed as possible and able to fix issues of their own, is able to.

By grouping observations together and looking at them closely,  many of those in the machine automation space may find that the issue can be fixed internally, rather than sending a part out to another party. Be sure to press the in-house employees for details, as someone on the clock may have witnessed the failure first-hand and would be able to provide more intimate and valuable insight as far as what may have happened. Any way to avoid a future issue is worth exploring!

As many know, factory automation machines consist of several interconnected parts and components. Because of this, it’s important not to overlook related issues that have occurred or may occur. If a drive (such as a FANUC Robotics Drive)  were to fail, best practice would be to send it along with the motor it’s connected with to preventative maintenance to be checked together. By consulting with the machines’ operators, you may find that other parts could be sent to preventative maintenance along with motor (such as a FANUC CNC motor)  and drive. Keep in mind, certified experts will likely be able to point machine details out that others may not recognize or think of. Nobody wants to run into an issue, fix said issue, and run into it again, due to lack of attention to detail.

Whether you have only two wires to unhook or twelve hundred, document everything. When you uninstall the damaged unit, label your wires. Be sure what you are using is sturdy and will remain affixed. Do not use tape that will slip off with grease or dust. Also, take before, during and after pictures of the operation. These pictures can save you from a tremendous headache later on. Also, when possible, make sure to save any parameters and record any settings before the unit has been taken out of service.

By documenting all of the parts or wires that had to be disassembled as specifically as possible, you would likely be avoiding many headaches. Nobody wants to disassemble a section of a machine, later to discover a wire or bolt is misplaced, which would lead to dreaded downtime that everyone in the factory automation and manufacturing space despises. Don’t be afraid to take a video or several photos of the disassembling process; in-depth videos or even photos are often invaluable to refer back to, especially when in a rush or a busy time of the year.

In order to make your time count with the service center, be sure to prepare your explanation on a written or typed document. If there’s a possibility of more than one employee communicating with the service center, ensure they’re up-to-speed with all details that may be of help to fixing the issue or issues at hand. MRO Electric and Supply has new and refurbished parts available now, and also offers repair pricing. Be sure to check out our core exchange program to learn how to save. For more information, please call 800-691-8511 or email sales@mroelectric.com.

Be sure to avoid shipping damage by packing the part or parts securely and appropriately. Nobody wants a quick and painless fix to turn into an extended fix due to laziness or lack of initiative to research correct packaging processes. Most units need 3-5 inches of packaging insulation on all sides, to ensure rough handling won’t damage the part or parts. Check out our other articles focused on robotics here.

LCD Retrofitting Benefits

LCD Retrofit

LCD Retrofitting Benefits

Part 1: CRT to LCD Retrofits

Many professionals in the automation space that have a CNC Machine (such as FANUC CNC parts found here) in their shop deal with pesky issues from time-to-time. One common issue for those who use CNC machines would be CRT monitors that begin showing their age. Several of our customers have been in this situation, feel as though they’re left with two choices: repair their CRT monitors, or replace them.

To be clear, those are not the only two options. The main reasons:

1.) it’s often time-consuming to pinpoint a CRT Replacement part.

2.) It is not cost-effective to have the CRT monitor repaired.

 Our alternative to the two options: an LCD retrofit (found in FANUC Displays and Controls) .

The advantages of retrofitting or upgrading a CRT monitor with an LCD retrofit are:

    • Improved screen visibility
    • Increased life of CNC Machine
  • Decrease amount of electricity used during operation

Part 2: Floppy Disk to USB Drive Retrofits

Another outdated piece we have encountered in the machine automation space? a floppy disk.  

Floppy disks are still in use today for some, often causing issues. By implementing an updated, customized USB flash drive, several issues can likely be avoided. What is now a slow and obsolete tool, the floppy disk is still in use with some of our clients and causing problems.  Our recommendation is a new custom-built USB flash drive solution.

Upgrading to a USB drive is usually a straightforward process. No changes or system configurations are necessary during this process, and yes, it will work on CNC machines and other devices that still use the floppy drive.

Nobody likes the costs of downtime including those in the machine automation space.

MRO Electric and Supply has new and refurbished FANUC CNC products available, including LCD Retrofit products. We also offer repair pricing. For more information, please call 800-691-8511 or email sales@mroelectric.com.

Siemens’ Update Broadens Toolset for Digitization in Machine Shop Environments

Siemens CNC

Siemens’ Update Broadens Toolset for Digitization in Machine Shop Environments

The most recent update from Siemens’ NX software coalesces the next generation of tools concerning additive manufacturing, CNC (computer numeric control) machining, robotics, and, last but not least, quality inspection to enable the digitalization of part manufacturing within a single, cohesive end-to-end system.

Up-to-date automation competence for computer-aided manufacturing (CAM), including robotic programming, adaptive milling, and tooling design, provide innovative, industry-specific technology to help deliver high-quality products to the market in less time. The new NX Machining Line Planner tool, combined with integrated NX CAM software for feature-based machining, provides new capabilities for industries with high-volume production of complicated parts, such as automotive and industrial machinery. The latest version of NX continues to support end-to-end solutions for additive manufacturing, helping manufacturers realize the goal of using 3D printing for industrial production.

Part manufacturers proceed to face increased pressures from modified market expectations, with customers who require optimized accuracy and faster response times. In order to remain competitive, many part manufacturers look to digitalization, which connects all of the steps of part manufacturing planning and production with a single source of information, or a digital thread. Implementing a digital strategy can enable part manufacturers of all sizes to take greater advantage of automation, adopt 3D printing for production, and ultimately expand into new market opportunities and reduce time to delivery.

State-of-the-art automation enhancements within the latest version of NX provide powerful ways to expand production efficiency and decrease cost. Robotic programming technology provides the ability to automate complete manufacturing cells, including programming robots to perform machining. Adaptive milling and tube milling are new capabilities that provide innovative ways to automate CNC machines and accelerate cutting of complex parts. Adaptive milling is a high-speed cutting method that leverages automation within NX to decrease machining cycles by up to 60 percent while extending tool life. Tube milling streamlines the 5-axis programming process by eliminating preparation and minimizing inputs, utilizing advanced capabilities to create ideal tool paths and minimize errors in machining on the shop floor.

Mold and die manufacturers can now accordingly dictate tool production costs through integration between NX and the Teamcenter portfolio. Engineers can now use NX to automatically recognize features and parameters on the desired part, and provide pertinent information to Teamcenter, which can precisely calculate the tool cost. The newly integrated capabilities of Siemens’ product lifecycle management (PLM) software solutions can enable tool manufacturers to win more orders and increase profit margins through automated costing and accurate quotations.

New to this version, NX Machining Line Planner, combined with integrated NX CAM, enables the feature recognition, distribution, balancing, programming and simulation of operations over multiple setups and machines. Particularly helpful for industries with high-volume production of complicated parts with many features, NX Machining Line Planner uses a digital twin of the complete machining line and NX CAM feature-based machining technology to optimize the entire process. NX Machining Line Planner, combined with the power of the digital twin, offers a truly unique solution that enables automotive and machinery manufacturers to reduce planning time and increase overall production results.

The newest version also inflates the new additive manufacturing solution in NX by including the new module, NX AM for HP Multi Jet Fusion, which is certified by HP and powered by Materialise, to prepare print jobs for HP Jet Fusion 4200 3D printers. The NX software module will allow customers to develop and manage parts in a single software environment for Multi Jet Fusion printing solutions, avoid costly and time-consuming data conversions and third-party tools, and improve their overall design-to-finished-part workflow efficiency.

Additionally, Siemens develops applications for additive manufacturing process simulation in Simcenter 3D, a crucial tool to help manufacturers industrialize additive manufacturing by printing components the first-time-right. These simulation applications are an integral part of the Siemens’  additive manufacturing solution. Increasing productivity is one goal for most of those in the automation space (check out boosting factory automation productivity here). MRO Electric and Supply has new and refurbished Siemens products available. We also offer repair pricing. For more information, please call 800-691-8511 or email sales@mroelectric.com.

Maintaining Automation Machine Tools

Properly maintaining automation machine tools and machine parts (such as Control Techniques Unidrives found here) is the only way to avoid issues from a performance and durability perspective. Whether it’s an attachment, cleaning or routine check-up, keeping machinery tools up-to-date is imperative. Monsterous losses could very well occur from a business and production standpoint if maintenance is not prioritized, which nobody wants to run into.

Machine Tools’ Lubrication:
 Lubrication is one of the most important things to keep in mind when it comes to any automation machines. Generally, regularly inspecting lubrication levels is a great place to start. If you notice decreased lubrication levels throughout a period of time, be sure to schedule a weekly check-in and carefully monitor. Regularly protecting machines’ motors, including oiling and greasing of their moving parts, cannot be avoided.
Sharpen Key Parts

When concerning machine tools that feature components engineered for cutting, slicing, or chopping, ensuring their parts maintain their sharpness is a must. Consult with a specialist to determine if the machines’ parts are in proper condition, and also be sure that their parts are sharpened properly also.

Verify alignment specifications

Another strategy to maintain factory automation tools and parts (such as the Modicon Quantum CPU 140CPU43412A) is to ensure you’re aware of the appropriate verification of alignment specifications. Product or component misalignment may be detrimental to a machine’s performance. By performing a handful of test jobs to check the tools’ alignment, you’ll be able to adjust accordingly.

Examine the cleanliness

Ensure all machine tools are cleaned daily or weekly, depending on the user guides’ instructions. Machines often collect a large amount of dirt and filth when operated, which may result in long-term issues if not tended to appropriately.

Understand Correct Power Mode 

By routinely inspecting the working mode of machines and setting them to the appropriate power mode, issues can be avoided such as overworking a machine or running a machine too slowly, which could cause debris. Refer to the machine’s operating manual to understand appropriate power modes associated with specific machines.

MRO Electric and Supply has new and refurbished Modicon Quantum CPUs and Control Techniques Unidrives products available. We also offer repair pricing. For more information, please call 800-691-8511 or email sales@mroelectric.com.

Perks of Operating Motors With Drives 

Perks of Operating Motors With Drives

drives and motors

MRO Electric and Supply has new and refurbished FANUC motors and Servo drives available. We also offer repair pricing. For more information, please call 800-691-8511 or email sales@mroelectric.com.

Adjustable speed drives (ASDs), or variable-speed drives (VSDs) is used to describe equipment that assists to control the speed of machinery. Usually, they are using in mechanical equipment powered by motors.

The drives offer truthful electrical motor control enabling motor speeds to be increased, decreased and maintained.

Save On Energy:

Due to energy consumption, centrifugal fan and pump loads operated with versatile speed drives are reduced. The horsepower needed to operate the fan is cut by a much larger factor if the speed of the fan is cut in thirds or in half. As everyone knows, energy savings are what machine automation professionals yearn for.

Controlled torque limit:

By using an adjustable speed drive, machinery can be protected from any damage that may occur. The specific amount of torque applied by the motor to a load is able to be fully controlled.

Controlled Starting Current:

Usually when an ac motor is started “across the line,” it takes about as seven-to-eight times to start the motor and load.

 By utilizing an adjustable speed drive, the considerably reduced starting current expands the life of an ac motor. The benefits are less wear & tear on the motor which translates to extend motor life and less motor rewinds.
Governed Stopping:

Governed stopping backs up diminish product loss because of machine-driven wear and tear attributed to shocks to the process.

Reverse Operation:

The requirement for a reversing started is mitigated in regards to utilizing an adjustable speed drive. The reason being is the output phases to the motor can be morphed electronically. Removing the reversing starter terminates its upkeep expense while also minimizing panel space.

Decreased Power Demand on Start:

To begin an AC motor across the line, one is going to need much more power compared to beginning an adjustable speed drive. This is only the case at the start because the power to run the motor at load would be the same regardless of its variable speed.

Adjustable Operating Speed:

Process automation and implementing changes in a process is allowed due to deploying an adjustable speed drive. This also enables beginning at a shortened speed and allows remote acclimation of speed by process controllers.

Removal of mechanical drive components:

By using an adjustable speed drive, the likelihood of needing costly mechanical drive components like gearboxes can be mitigated. The AC drive is able to transport the high and/or low speed required by the load with a consistent speed between the motor and load because it’s able to function with an infinite variable speed.

FANUC Panel Keyboard Keys Overview

FANUC Alarm keys: These keys are located on the machine panel that displays alarm intelligence for the machine panel. MRO Electric has several FANUC part numbers starting with A06B, A20B, and A16B in-stock. These keys differ from the alarm keys correlated with the control panel.

FANUC Auto key: This is the key on the CNC machine (including the A16B, A17B & A20B product line) that reshapes the operation mode to automatic. Automatic mode authorizes an operator to contact and execute a part program stored in memory. Automatic mode is called memory mode on some FANUC CNC controls at times.

A safety function that determines if the tool has moved beyond its set boundaries. Forbidden zones can be programmed to specify areas where the tool can and cannot enter.

Page keys: The up and down arrow keys located on the MDI keypad (A20B ) that allow an operator to move through various screens and fields one page at a time.

Parentheses: ( ). Curved brackets used to separate program text information from CNC program commands.

Part program: A series of instructions used by a CNC machine to perform the necessary sequence of operations to machine a specific workpiece.

POS: A function key located on the MDI keypad that displays the position screen that shows axis locations.

Power off: The red button on a CNC control panel that shuts off power to the control.

Power on: The green button on a CNC control panel that provides power to the control.

PRGRM: A function key located on the MDI keypad that displays the program screen and blocks of the current part program.

Program edit keys: Keys located on the MDI keypad that allow an operator to alter, insert, or delete data from stored memory.

Program protect switch: A switch located on the machine control panel that allows the operator to secure current program information. The program protect switch prevents accidental or intentional deletion of programs in memory.

Program source keys: The group of keys on the operator panel that control how part programs are used. The AUTO, EDIT, and MDI keys that comprise the program source keys are distinct machine modes.

Rapid traverse: The movement of machine components at the fastest possible rate of travel. Rapid traverse motion merely requires an endpoint for the movement.

Reference position: A fixed position on a machine tool to which the tool can easily be moved by the reference position return function.

Reset key: A key located on the MDI keypad that stops all machine motion and places the program cursor at the top of the current program.

Shift key: A key located on the MDI keypad that allows an operator to access letters and special characters found on the address keys.

SINGL BLOCK key: A key that activates the single block feature on the GE FANUC 0-C control. The single block function runs the program one block at a time to prove out the program.

Soft keys: Keys located directly below the display screen that have different purposes depending on which function key has been chosen. The function of each soft key is visible on the display screen between brackets.

SP: A key that allows an operator to enter a space when manually entering data.

Spindle jog key: A key located on the machine panel that rotates the spindle incrementally in either a clockwise or counterclockwise direction.

Spindle keys: The area of the CNC machine control that allows the operator to manually control the rotation of the spindle in a clockwise or counter-clockwise direction. The spindle keys include CW (clockwise) and CCW (counter-clockwise), STOP, and JOG.

TEACH key: A key that changes the operation mode of a CNC machine to allow tool positions obtained by manual operation to be stored in memory.

Tool limit switch: The component that prevents a tool from exceeding the set direction limit on an axis. The tool limit switch detects overtravel.

Zero return key: Also known as the home key, zero return automatically moves the spindle to the machine zero position.

Auto mode: Auto mode is the mode that enables an operator to contact and execute a part program stored in the machine.

AUX/Graph: AUX/Graph is a function key located on the MDI keypad (A20B) that demonstrates the graphics screen.

Axis/direction keys: Axis/direction keys are located in the area of the machine control that enables an operator to select a specific axis.

BLOCK DELET key: BLOCK DELET key is a machine control that delivers the option of leaving out a predetermined series of program blocks. A block delete authorizes the operator to run two versions of the identical program.

Brackets: [ ]. Punctuation marks used to distinguish CNC program commands from macro statements.

CAN key: The CAN key is located on the MDI keypad that backspaces the cursor to remove the last character entered. It also drops any program block that is highlighted during a block edit.

Control Panel: The Control Panel is a group of controls on a CNC machine (A02B, A16B, A17B & A20B) that runs, store, and edits the commands of a part program and other coordinate details.

Coolant keys: Coolant Keys are the area of the CNC machine control that enables an operator to switch the coolant on and off, manually or automatically, during a program cycle.

Cursor keys: Cursor keys are the up and down arrow keys located on the MDI keypad that authorize an operator to move through numerous screens and fields in the control, edit and search for CNC programs, and move the cursor through the program or screen options.

Cycle start: Cycle start is the control button used to initiate a program or continue a program that has been previously stopped.

Cycle stop: The control button used to bring a program to a temporary halt. Also known as feed hold, cycle stop pauses tool feed but does not pause spindle movement.

DGNOS/PARAM: A function key located on the MDI keypad that demonstrates the diagnostics and parameters screens.

Display screen: The main screen of the machine that displays urgent information for the operator.

DRY RUN key: A key that activates the dry run feature on a CNC machine (example: . The dry run function checks a program quickly without cutting parts.

EDIT key: The key on the CNC machine that modifies the operation mode to edit. Edit mode allows an operator to make changes to a part program and store those changes.

EDIT mode: The mode that enables an operator to modify a part program and store those changes.

Emergency stop: Used for emergencies only, the control button that automatically shuts down all machine functions.

End-of-block key: EOB. A signal that marks the end of a part program block. An end-of-block signal is symbolized by a semicolon (;) in a part program.

Execution keys: The area of the CNC machine control that enables an operator to begin or end a part program. The execution keys include CYCLE START and CYCLE STOP.

Feed hold: The control button used to pause a program. Also known as cycle stop, feed hold pauses tool feed but does not stop spindle movement.

Function keys: Keys located on the MDI keypad that allows the operator to choose between contrasting tasks.

HOME key: A key that automatically moves the spindle to the machine zero position. The HOME key is called the zero return key on some machines at times.

Input buffer: A temporary location on a computer that holds all incoming information before it continues to the CPU for processing.

Input key: A key located on the MDI keypad that enables an operator to enter data into the input buffer. This key is also used to input data from an input/output unit.

Jog feed: In JOG mode, the continuous movement of a tool in a direction along a selected axis.

JOG key: The area of the machine control that allows an operator to move a selected axis. Jog keys are often called axis direction keys.

Machine function keys: The area of the control panel that allows an operator to perform different functions depending on what display or mode is selected. The machine function keys include SINGL BLOCK, BLOCK DELET, and DRY RUN.

Machine panel: The group of controls on a CNC machine that allow an operator to control machine components manually. Sometimes called the operator panel.

Machine zero: The position located at the farthest possible distance in a positive direction along the machine axes. Machine zero is permanently set for each particular CNC machine.

Manual data input keypad: The MDI keypad is located on the control panel and houses the address, numeric, and navigation keys.

Manual pulse generator: A circular handwheel on a CNC machine that can move a tool incrementally along an axis. On some machines, the MPG is known as the “handle.”

Manual pulse generator keys: Keys located on the machine panel that allow the operator to move the tool incrementally along an axis.

MDI key: The key on the CNC machine that changes the operation mode to manual data input mode. Manual data input mode lets an operator enter and execute program data without disturbing stored data.

MDI mode: An operation mode that lets an operator enter and execute program data without disturbing stored data.

MPG keys: The keys on the operator panel that control the size of incremental movement of the manual pulse generator.

No. key: A key that allows an operator to enter a numerical value into the input buffer. The SHIFT key must be used with the No. key.

Numeric keys: Keys located on the MDI keypad that allow an operator to enter numbers, a minus sign, and a decimal point into the control. These keys also contain the CAN key, manual JOG arrow keys, the EOB key, the BLOCK DELET, and the right and left cursor move keys.

Offset register: Area of the machine control that holds tool geometry, wear, and work offset settings.

OFSET: A function key located on the MDI keypad that displays tool offsets and settings.

OFSET MESUR key: A key on the CNC machine control panel that allows the operator to determine and set a tool offset. It measures the current coordinate value and the coordinate value of a command, and uses the difference as the offset value. If the offset value is already known, pressing the OFSET MESUR key moves the tool to the specified offset position.

Operation keys: The keys located on the operator panel that allow an operator to move tools and set offsets.

Operation mode keys: The AUTO, EDIT, and MDI keys that change the operation mode of the CNC machine.

Operator panel: The group of controls on a CNC machine that allow an operator to control machine components manually. Sometimes called the machine panel.

OPR/ALARM: A function key located on the MDI keypad that displays the alarm screen.

Output/start key: A key located on the MDI keypad that allows an operator to start an automatic operation and output data into an input/output unit.

Override: A machine control component that adjusts programmed values such as speed and feed rate by a certain percentage during operation.

Over-travel check: A safety function that determines if the tool has moved beyond its set boundaries. Forbidden zones can be programmed to specify areas where the tool can and cannot enter.

MRO Electric and Supply has new and refurbished FANUC CNC parts available now such as motors, servo amps, spindle ampsdisplays and controls, power supplies, I/O modules,  and PCBs.

We also offer repair pricing. For more information, please call 800-691-8511 or email sales@mroelectric.com.