UD75 Configuration and Setup

You can check out our previous blog post  on the UD75 here for more information. Check out the UD75 product page on our website along with all of our other Unidrive options.

UD75 Configuration
  1. Isolate the drive from the mains supply and allow 5 minutes for the DC Bus capacitors to discharge.
  2. Insert Large Option Module as shown below. Ensure that it is correctly inserted. The module will click firmly into place.
  3. To remove the module, pull on the black tab, and the module will disengage from the connector and pull out of the drive.
UD75 Configuration: Cable Screen
The screen of the cable at every node on the network MUST be connected to the screen terminal (pin 3) on the CTNet terminal block. When the screen is stripped back to connect the twisted pair to the CTNet terminals, keep the exposed section of the cable as short as possible. On the CTNet PC Interface Adapter Card, there is no screen terminal. The screen should be cut and taped back to prevent it coming into contact with any other surfaces. The on-board terminal resistor should not be connected.
UD75 Configuration: Network Termination
The network MUST be fitted with terminating resistors AT BOTH ENDS!!! If resistors are not fitted, the network appear to work OK, but the noise immunity of the network will be drastically reduced. The terminating resistor value should match the nominal characteristic impedance value for the cable; in the case of the customized CTNet cable, the terminating resistors used should be nominally 78Ω. PC ISA and PCMCIA cards for interfacing a PC to CTNet are available from CT SSPD.

For price and ordering info you can email sales@mroelectric.com or call 1-800-691-8511. We have these and all the other Control Techniques Unidrive Classic option modules in stock, along with the drives themselves.

UD75 Configuration
UD75 Configuration

6FC5357-0BB35-0AA0 Configuration and Setup

You can check out our previous blog post on the 6FC5357-0BB35-0AA0 here for more information. Check out our websites to see all of our Siemens products.

The 6FC5357-0BB35-0AA0 configuration features a modular design comprising line filter, commutating reactor, line supply infeed module, drive modules as well as, when required: monitoring, pulsed resistor and capacitor module(s). Satisfactory operation is ensured only in conjunction with the components that are described in the 6FC5357-0BB35-0AA0 Configuration Manual or published in the Catalog NC60 (Internet Mall) and with adherence to the required boundary/application conditions. Modules can also be arranged in several tiers one above the other or next to one another.

The housings of the  6FC5357-0BB35-0AA0 converter system modules are enclosed and EMC–compatible as specified in EN 60529 (IEC 60529). The electrical system is designed to comply with EN 50178 (VDE 0160) and EN 60204, and an EC declaration of conformity is available. The connections in the module group, motor cables, encoder lines and bus lines must be made using preassembled MOTION–CONNECT lines.

Due to the limited conductivity of the DC link busbars of the modules with module width 150 mm, the DC link power PZK of these modules must not exceed 55 kW. Larger DC link busbars must be used if this restriction cannot be complied with. The DC link power PZK of the subsequent modules is calculated according to the engineering rule specified in the manual. The larger DC link busbars can be ordered as a set. The set includes reinforced DC link busbars for module widths 50 mm, 100 mm and 150 mm. The standard DC link brackets between the modules may not be changed, even when strengthened DC link busbars are used.

To order or get price you can email sales@mroelectric.com or call 1-800-691-8511.

6FC5357-0BB35-0AA0
6FC5357-0BB35-0AA0 Configuation

UNI3405 Configuration and Setup

You can check out our previous blog post on the Control Techniques UNI3405 manual here for more information.

Since capacitance in the motor cable causes loading on the output of the UNI3405 Drive, ensure the cable length does not exceed 660 ft. (400 volts) or 410 ft. (480 volts).
Cable lengths in excess of the specified values may be used in the UNI3405 configuration only when special techniques are adopted; refer to the supplier of the Drive.

The maximum cable length  for the Unidrive UNI3405 configuration is reduced from that shown above under the following conditions:

    • PWM switching frequency exceeding 3kHz in model sizes 3 and 4 — The maximum cable length is reduced in proportion to the increase in PWM switching frequency, eg. at 9kHz, the maximum length is 1/3 of that shown.
  • High-capacitance cables – Most cables have an insulating jacket between the cores and the armour or shield; these cables have a low capacitance and are recommended. Cables that do not have an insulating jacket tend to have high capacitance; if a cable of this type is used, the maximum cable length is half that quoted in the table.
The Drive has two forms of thermal protection for the power output stage (IGBT bridge), as follows:
  1. A thermistor mounted on the heatsink monitors the heatsink temperature. If this exceeds 95 °C (203 °F), the thermistor will cause the Drive to trip. The display will indicate Oh2
  2. Intelligent thermal modelling estimates (by calculation) the junction temperature of the IGBTs. There are two temperature thresholds which cause the following to occur:
    • If the first threshold is reached, the PWM switching frequency is halved in order to reduce dissipation in the IGBTs. (When the frequency is halved, the value of parameter 0.41 PWM switching frequency remains at the value set by the user; if the frequency is 3kHz or 4.5kHz, no halving occurs). Then at one second intervals, the Drive will attempt to restore the original PWM switching frequency. This will be successful if the estimated temperature has reduced sufficiently.
    • If the estimated temperature has continued to rise and reaches a second threshold, the Drive will trip. The display will indicate Oh1.

You can get price and availability by emailing sales@mroelectric.com or calling 1-800-691-8511.

uni3405
Control Techniques uni3405

6SN1145-1BA01-0BA1 Configuration and Setup

You can view our previous blog post on the Siemens 6SN1145-1BA01-0BA1 manual here for more information.

Drive Line-Up
The Siemens 1P 6SN1145-1BA01-0BA1 configuration is modular, comprising line filter, commutating reactor, line supply infeed module, drive modules as well as, when required: monitoring, pulsed resistor and capacitor module(s). Satisfactory operation is ensured only in conjunction with the components that are described in the Configuration Manual or published in the Catalog NC60 (Internet Mall) and with adherence to the required boundary/application conditions. In order to avoid contamination, the modules should be installed in a control cabinet with degree of protection IP 54. Modules can also be arranged in several tiers one above the other or next to one another.

Check out all of our Siemens products on our website!

Due to the limited conductivity of the DC link busbars of the modules with module width 150 mm, the DC link power PZK of the Siemens 6SN1145-1BA01-0BA1 configuration must not exceed 55 kW. Larger DC link busbars must be used if this restriction cannot be complied with. The DC link power PZK of the subsequent modules is calculated according to the engineering rule specified in Chapter 1.3 of the manual. The larger DC link busbars can be ordered as a set with Order No. [MLFB] 1P 6SN1161–1AA02–6AA0. The set includes reinforced DC link busbars for module widths 50 mm, 100 mm and 150 mm. The standard DC link brackets between the modules may not be changed, even when strengthened DC link busbars are used.

For a 6SN1161–1AA02–6AA0 price quote and ordering info you can email sales@mroelectric.com or call 1-800-691-8511.
6SN1145-1BA01-0BA1 Configuration
Siemens 6SN1145-1BA01-0BA1 Configuration

UD73 Configuration and Setup

You can check out our previous blog post on the UD73 here for additional setup and configuration info.

For UD73 configuration, most common parameters are arranged in one concise menu. Hundreds of user-configurable functions separated into 20 logical menus provide quick setup for advanced application. For positioning, ratio control, camming and multi-axis systems, plug-in option modules easily extend the Unidrive’s capabilities. High horsepower Unidrives cover the range from 200 to 1600 HP. The 300 amp power module and control pod (the “brain”) are available as components. They are also available as a packaged drive solution that includes fusing and a disconnect. (See our Packaged Drive Section, pages 120-123 and 128-133.) With the UD73’s extensive selection of communication, application, feedback and I/O modules, you can easily upgrade the performance of your drive. Yet, it is simple to configure by using the drive keypad, a remote keypad (CTKP), or UniSoft, the UD73 Windows based drive set-up tool. You can tailor each Unidrive to be the drive you want when you want it.
    • Digital AC Drive
    • 1 to 30 HP, 3 Phase, 208-230 VAC
    • 1 to 1600 HP, 3 Phase, 380-460 VAC
    • Five operating modes
        • V/Hz
        • Open loop vector
        • Closed loop vector
        • Brushless AC servo
      • Regenerative
    • UniSoft Windows based configuration tool
    • Configurable analog and digital I/O
  • Complete Motor Solutions
The UD73 configuration is suited for use with AC brushless servo motors. Servo control is ideal for applications requiring load transfer to and from any position, at any speed. The UD73 is designed for both stand-alone and multi-axis system applications.
In regen mode, two standard UD73’s operate together to provide full four-quadrant control of an AC motor. The system consists of two basic sub-systems, one being a Unidrive operating in any of its standard operating modes (open loop, vector or servo), and the other is a Unidrive operating in its regenerative mode. The link between the two sub-systems is simply the DC bus connections. In this mode, the UD73 is capable
of either supplying power to the DC bus of the Unidrive controlling the motor or removing power from the DC bus of the Unidrive controlling the motor and returning it back to the power line.
If you would like to order a module or get more info you can email sales@mroelectric.com or call 1-800-691-8511.

140CPU43412A Configuration and Setup

You can check out our previous blog post on the 140CPU43412A manual and configuration here for additional setup info.

Front Panel Topology
There are two switches (a three-position slide switch and a three-position key switch) located on the front of the 140CPU43412A configuration. The module has a single slide switch that is used to select the comm parameter settings for the Modbus (RS-232) ports.
Rear Panel Topology

The address switch, which is comprised of two rotary switches, is located on the rear panel of the Quantum CPUs. The address switch is used for setting Modbus Plus node and Modbus port addresses. SW1 (the top switch) sets the upper digit (tens) of the address, SW2 (the bottom switch) sets the lower digit (ones) of the address. The illustration below shows the correct setting for an example address of 11.

Option Module Interface Support

The 140CPU43412A firmware supports up to six network modules (i.e., Modbus Plus, Ethernet, and Multi-Axis Motion option modules) using the option module interface technique. However, only two Modbus Plus modules can have full functionality, including Quantum DIO support.

For ordering info or for the 140CPU43412A price you can call 1-800-691-8511 or email sales@mroelectric.com.

140CPU43412A
140CPU43412A
UNI1405

UNI1405 Configuration and Setup

You can check out our previous blog post on the UNI1405 parameters and manual here with additional setup info. Check out our entire collection of Unidrives on our website.

With the UNI1405 configuration, the volts / frequency ratio must be kept constant to ensure rated torque is available from the motor over the frequency range. At low frequencies (from 0 Hz to ½ x Pr 5.06) the voltage is increased from this characteristic by a level governed by either the voltage boost parameter or the motor parameters (found during the stator resistance test) depending on whether the drive is in fixed boost or open loop vector mode as shown aside.

UNI1405 Motor Rated Power Factor

The power factor is found by the UNI1405 4kw during the autotune procedure. It is used in the open loop vector algorithm and to set the current limit levels for the torque producing (active) current.

Emerson UNI1405 4kw Motor Rated Speed

The motor rated speed parameter should be set to the synchronous speed of the motor minus the slip speed. This is often displayed on the motor nameplate. I.e. For a typical 18.5 kW, 50 Hz, 4 pole motor the motor rated speed is 1465 rpm. The synchronous speed for a 4 pole motor is 1500 rpm therefore the slip speed is 35 rpm Synchronous speeds for different numbers of poles are as follows:
2 pole = 3,000 rpm
4 pole = 1,500 rpm
6 pole = 1,000 rpm
8 pole = 750 rpm
The accuracy of this parameter is very important as it directly affects the torque produced at the shaft. Often the value given on the motor nameplate is not
100% accurate which can lead to a loss of torque.
For ordering info or a UNI1405 price you can call 1-800-691-8511 or email sales@mroelectric.com.
UNI1405 Configuration
UNI1405 Configuration