Product Video – Fanuc A06B-6066-H008 Servo Amp

To highlight some of the products that we have in stock and service we’ve decided to start uploading videos of the individual products. Here is a look at the Fanuc A06B-6066-H008 Servo Amp that we have in stock. The unit has been recently refurbished, is fully tested and is ready to ship out today if need be. We also offer repair on these servo amplifier units with a standard turnaround of 3-5 days.

Be sure to check out our article covering FANUC CNC Troubleshooting Frequently Asked Questions here.

MRO Electric and Supply maintains a comprehensive stock of new and used FANUC CNC and FANUC Robots parts. If you need a FANUC replacement part, please call 800-691-8511 or email sales@mroelectric.com.

Fanuc Spindle Amp Alarm Codes for Alpha Series

fanuc spindle amp

Fanuc Spindle Amp Alarm Codes for Alpha Series

Fanuc Spindle Amp Alarm codes for amplifiers that start with part number A06B-6088, A06B-6102, and A06B-6078.

“A” Program Rom abnormality (Not Installed)

AL-01 Motor Overheat

AL-02 Excessive speed deviation

AL-03 DC Link fuse blown

AL-04 Input fuse blown

AL-05 Control power supply

AL-06 Over Speed

AL-07 Excessive Speed

AL-08 High Input Voltage

AL-09 Excessive load on main circuit section

AL-10 Low input voltage

AL-11 Over-voltage in DC link section

AL-12 Over-current in DC link section

AL-13 CPU Internal data memory abnormality

AL-15 Spindle switch/output switch alarm

AL-16 RAM Abnormality

AL-18 Program ROM checksum error

AL-19 Excessive U phase current detection circuit offset

AL-20 Excessive V phase current detection circuit offset

AL-24 Serial transfer data error

AL-25 Serial transfer data stopped

MRO Electric and Supply maintains a comprehensive stock of new and used FANUC CNC parts including FANUC Spindle Amps. If you need a replacement part, please call 800-691-8511 or email sales@mroelectric.com.

AL-26 Disconnection of speed detection signal for C’s contouring control

AL-27 Position coder signal disconnection

AL-28 Disconnection of position detection signals for C’s contouring control

AL-29 Short-time overload

AL-30 Input circuit over current

AL-31 Speed detection signal disconnection motor restraint alarm

AL-32 Abnormality in RAM internal to LSI for serial data transfer

AL-33 Insufficient DC link section charging

AL-34 Parameter data setting beyond allowable range of values

AL-35 Excessive gear ratio data setting

AL-36 Error counter overflow

AL-37 Speed detector parameter setting error

AL-39 Alarm for indicating failure in detecting 1-rotation signal for C’s contouring control

AL-40 Alarm for indicating 1-rotation signal for C’s contouring control not detected

AL-41 Alarm for indicating failure in detecting position coder 1-rotation signal

AL-42 Alarm for indication position coder 1-rotation not detected

AL-43 Alarm for indicating disconnection of position coder signal for differential speed mode

AL-46 Alarm for indicating failure in detecting position coder 1 rotation signal in thread cutting operation

AL-47 Position coder signal abnormality

AL-48 Position coder 1-rotation signal abnormality

AL-49 The converted differential speed is too high

AL-50 Excessive speed command calculation value in spindle synchronization control

AL-51 Under voltage at DC link section

AL-52 ITP signal abnormality 1

AL-53 ITP signal abnormality 2

AL-54 Overload current alarm

AL-55 Power line abnormality in spindle switching/output switching

AL-56 Cooling fan error.

Fanuc Alpha Power Supply Fault Codes

fanuc cnc

Fanuc Alpha Power Supply Fault Codes

These codes and troubleshooting apply to DC and AC Fanuc power supplies that begin with part number A06B-6077, A06B-6081, and A06B-6087. On the LED display for these units, a “-” will mean that the power supply is not ready while a “0” means that the power supply is powered up correctly. If it reads something other than these two then the power supply has an alarm that needs to be corrected. Below is the list of Fanuc Alpha Power Supply fault codes.

MRO Electric and Supply maintains a comprehensive stock of new and used FANUC Spindle Amps. If you need a replacement part, please call 800-691-8511 or email sales@mroelectric.com.

Alarms
AL-01: Overcurrent in the Main Power Module.
AL-02: Cooling Fan Stopped.
AL-03: The temperature of the main circuit heat sink has risen abnormally.
AL-04: The DC Voltage has dropped.
AL-05: The main Capacitor was not recharged within the specified time.
AL-06: The Input Power Supply is Abnormal.
AL-07: In the main circuit the DC Voltage is abnormally high

A common alarm on installation of a new alpha power supply is an AL-05.
If you have this alarm we recommend double-checking the bus bar connector at the top of the power supply to make sure it is fully connected. Be sufe to check out our article on FANUC Alpha Servo Troubleshooting as well as  FANUC CNC parts.

How to Troubleshoot Faults of Fanuc Alpha Servo Drives

fanuc cnc

What is a FANUC Servo Alarm 8, 9, or A?

Before we dive in, let’s discuss what exactly a FANUC servo alarm is.

When a Fanuc Alpha Servo drive shows an A, 9, or 8 alarm, this is indicative of a short circuit or high current in the motor or amplifier. To fix this, you must determine which axis is at fault. Make sure you’ve checked this is not a mechanical failure or even a binding condition beforehand.

The alarm will point to this area:

  • FANUC servo drive alarm 8 is the L axis
  • FANUC servo drive alarm 9 is the M axis
  • FANUC servo drive alarm A is the N axis

Troubleshooting FANUC Servo Alarm 8,9, or A

This troubleshooting guide is in reference to Fanuc drives that begin with part number A06B-6079, A06B-6080, and A06B-6096 and is meant to help troubleshoot Fanuc servo amplifiers faults. Before you continue to determine what’s happening to your servo amp, make sure to check for the following:

1 – Determine if your servo amp or motor is defective.

If the alarm is occurring before the motor power is present, consider checking either the servo amp or the feedback circuit. Do this by disconnecting the feedback cable and turning on the power. This will isolate the failure. If you have no alarm, this means the problem lies with the feedback cable or a pulse coder. If the fault remains, the servo amp is the issue.

If the alarm does not occur before motor power, then you will need to continue following the below steps.

If the alarm occurs when motor power is present, the problem might lie with the motor power circuit or the servo amplifier. Disconnect the power cable and turn the machine on. If this action results in the alarm continuing, the problem is with the servo amp. If this action ceases the alarm, follow the next steps.

2 – Shut off the power

Never forget safety when working with these devices. For the proceeding steps, make sure to disconnect the servo amplifier. Also keep in mind, if a drive status alarm appears on the 7 segment display, where the “-” refers to drive not ready (Waiting for an Emergency Stop signal to power up) and “0” refers to drive powering up correctly. Any other number or letter on this status display is one of the FANUC alarm codes. This is one of the more common faults, the FANUC servo Alarm 8.

Here are the steps to check to see what the issue may be when an alarm comes up on your drive.

FANUC Alarm Code 8, 9, or A Steps

1 – Check the link

(A06B-6079 drives only). An A06B-6079 drive can give a fault if the S1 Link is in the wrong position, so check the S1 – JV Connections (Type A Interface) and S2 – JS Connections (Type B Interface). An incorrect setting will cause a FANUC Drive Alarm “8”.

2 – Check the wiring

A L motor is wired in the lower terminals and an M motor is wired in the upper terminals, both as U/V/W/E. JV1B connected from the L command plug of the axis card, JV2B from the M command plug. JX1A connected from previous drive, JX1B connected to the next drive in the line. The last drive in the line has a terminator in JX1B. 24v/0v/ESP connected into CX1A from the previous drive, out of CX1B to the next drive in the line.

3 – Disconnect motor cable

Meggar the motor to check the readings.

4 – Power machine on

Do this while it is in an emergency stop. The drive is faulty if an alarm occurs, expect a “-” reading.

5 – Release Emergency Stop

Power the machine up after releasing the stop. If an alarm occurs, power the machine off and remove motor wires U/V/W/E (Note – this is dangerous on a vertical axis, brake release, slide drops etc). Release Emergency Stop and power the machine up. The drive is faulty if the alarm occurs, expect “0” reading.

Alternative Options

If these steps do not help, an additional test can be performed for equally sized 6079/6080 amplifiers H201 SVM2-12/12          H301 SVM2-12/12/12 H203 SVM2-20/20          H302 SVM3-12/12/20 (L&M) H206 SVM2-40/40          H303 SVM3-12/20/20 (M&N) H208 SVM2-80/80          H304 SVM3-20/20/20 (L/M&N) The suspect axis can be run from the other amplifier in the drive ie X drives M amplifier, Y drives L amplifier. To do this swap round a – X & Y Motor cables U/V/W/E (at the drive) and b – X & Y Command cables (at the drive) (6096 requires parameters changing to swap X & Y round).

The drive is faulty if the alarm remains the same as before the test. For example Alarm “8” is reported on a 6079-H201 drive using JV connections Steps 1~5 above, have been performed and still alarm “8”. Remove the servo motor wires from the lower terminals and reconnect into the upper terminals, upper into lower. Remove JV1B and insert into JV2B, JV2B into JV1B. Retest the machine.

The drive is faulty if the same alarm occurs, ie alarm “8” The fault lies elsewhere on the machine if another alarm occurs, ie alarm “9”. In this example the drive has detected an overcurrent from the L axis, alarm “8” Swapping the cables over allowed a different amplifier to control the axis. An “8” alarm would remain if the same drive circuitry detected the overcurrent. A “9” would occur if the overcurrent was detected using the other drive circuitry in the amplifier and the fault would be caused externally from the drive.

Still having trouble with your Fanuc Servo Alarm 8, 9, or A?

Contact MRO Electric for help. Get yourself a new FANUC servo amplifier or check out our FANUC servo motors. MRO Electric and Supply supplies and repairs a large number of FANUC Servo Drives. To request a quote, please call 800-691-8511 or email sales@mroelectric.com.

Fanuc Spindle Alarms for Troubleshooting

A06B-6079-H106

Alarm # Led Display Content of FANUC SPINDLE Alarms
8 4 2 1

1

     

o

Motor Overheat

2

   

o

  Speed deviates from commanded speed

3

   

o

o

Regenerative fault

6

 

o

o

  Excess Motor Speed Analog

7

 

o

o

o

Excess Motor Speed Digital

8

o

      Voltage higher than specified

9

o

   

o

Radiator for power semiconductor overheat

10

o

 

o

  +15Volt Supply is low

11

o

 

o

o

DC Link voltage is high

12

o

o

    DC Link current is high

13

o

o

 

o

CPU and peripheral parts are defective

14

o

o

o

  ROM is defective

Alarm List for A06B-6044-Hxxx

Alarm List for the following Drives:

Alarm # Led Display Content of Alarms
8 4 2 1

1

     

o

Motor Overheat

2

   

o

  Speed deviates from commanded speed

3

   

o

o

Fuse F7in DC link is blown out.

4

 

o

    Fuses F1,F2,F3 for AC input blown out.

5

 

o

 

o

Fuses AF2 or AF3 on PCB are blown out.

6

 

o

o

  Excess Motor Speed Analog

7

 

o

o

o

Excess Motor Speed Digital

8

o

      Voltage higher than specified (24v)

9

o

   

o

Radiator for power semiconductor overheat

10

o

 

o

  +15Volt Supply is low

11

o

 

o

o

DC Link voltage is high

12

o

o

    DC Link current is high

13

o

o

 

o

CPU and peripheral parts are defective

14

o

o

o

  ROM is defective

15

o

o

o

o

Option circuit fault.

Digital AC Spindle Drive

Alarm List for A06B-6055-Hxxx

Alarm List for the following drives:

  • Model 3 thru 22    A06B-6055-Hxxx

 

Alarm Display Alarm Content

AL-01

Motor Overheated

AL-02

Speed deviates from commanded speed

AL-03

Fuse F7in DC link is blown out.

AL-04

Fuses F1,F2,F3 for AC input blown out.

AL-06

Excess Motor Speed Analog

AL-07

Excess Motor Speed Digital

AL-08

Voltage higher than specified (24v)

AL-09

Radiator for power semiconductor overheat

AL-10

+15v power supply is abnormally low

AL-11

DC Link voltage is high

AL-12

DC Link current is high

AL-13

Data memory for CPU abnormal

AL-16

RAM in NVRAM is abnormal

AL-17

ROM in NVRAM is abnormal

AL-18

Check sum alarm of ROM

AL-19

Excessive alarm of U phase current detection circuit offset

AL-20

Excessive alarm of V phase current detection circuit offset

AL-21

Excessive alarm of velocity command circuit offset.

AL-22

Excessive alarm of velocity detection circuit offset.

AL-23

Excessive alarm of ER circuit offset.

AL-14

ROM is abnormal

AL-15

Spindle selection control circuit is abnormal.

Alarm List for A06B-6059-Hxxx

Alarm List for the following drives:

  • Model 1S thru 3S   A06B-6059-Hxxx

 View Fanuc Spindle Amp Alarm Codes for Alpha Series here. 

Alarm # Meaning

AL-01

Motor Overheat

AL-02

Speed deviates from commanded speed

AL-03

24v Fuse is blown. (before PCB edition 09A)

AL-04

 

AL-05

 

AL-06

Excess Motor Speed Analog

AL-07

Excess Motor Speed Digital

AL-08

Over voltage

AL-09

Overheat of radiator

AL-10

Low voltage of input power.

AL-11

Excessive high voltage of DC link

AL-12

Abnormal current of DC link

AL-13-15

 

AL-16-23

Defective arithmetic circuit and peripheral circuit

No indication

Defective ROM

Alarm List for A06B-6059-Hxxx

Alarm List for the following drives:

  • Model 6S-26S    A06B-6059-Hxxx
Alarm # Meaning

AL-01

Motor Overheat

AL-02

Speed deviates from commanded speed

AL-03

24v Fuse is blown. (before PCB edition 09A)

AL-04

Open phase of input power.

AL-05

 

AL-06

Excess Motor Speed Analog

AL-07

Excess Motor Speed Digital

AL-08

Over voltage

AL-09

Overheat of radiator

AL-10

Low voltage of input power.

AL-11

Excessive high voltage of DC link

AL-12

Abnormal current of DC link

AL-13

Defective arithmetic circuit

AL-14

Defective ROM

AL-15

Defective optional circuit.

AL-16-23

Defective arithmetic circuit and peripheral circuit

No indication

Defective ROM

Dealing with FANUC spindle alarms?

Let MRO help you troubleshoot and repair your spindle amplifier, with our professional repair services! Or, if you need a replacement FANUC part, we have you covered with our extensive selection of FANUC parts.

Restoring FANUC Beta Drive Parameters

fanuc robotics

Restoring FANUC Beta Drive Parameters

Some instructions to help out when replacing your drives and restoring the Fanuc beta drive parameters. With Beta series drives the parameters are stored in the drive so if you
replace the drive the parameters will go with it. MRO Electric and Supply maintains a comprehensive stock of new and used FANUC Robotics Drives parts. If you need a replacement part, please call 800-691-8511 or email sales@mroelectric.com.

To save and restore Power Mate CNC Manager parameters to Beta Servo Drives:

This is required when replacing a Beta drive and applies to the following
controls. 16iA,18iA,21iA,16iB,18iB,21iB,20i,16,18,21,0i,Powe rate-iD and Powermate-iH.

1. Make NC PRM 960.3 (PMN) = 0 (Enables PMM function).
2. Select where parameters are to be saved (to save to memory card on i series controls make PRM 960.2
(MD2) = 0 and PRM 960.1 (MD1) = 1, to save as a part program make PRM 960.1 = 0).
3. Set parameter 8760 to the program number you want the parameters to be stored as. Note 1.
4. Press the SYSTEM button then the RIGHT CHAPTER button until the Power Motion Manager screen is displayed.
5. Press the SYSTEM soft key.
6. Press the PARAM soft key.
7. Press the OPRT soft key.
8. Press the RIGHT CHAPTER button. READ and PUNCH soft keys will be displayed.
9. Select EDIT mode.
10.To save parameters from Beta drive to CNC press the READ soft key, press the ALL soft key then the EXEC soft key.
11.To restore the parameters from the CNC to the Beta drive press the PUNCH soft key, press the ALL soft key, then the EXEC soft key.

Be sure to check out our A06B-6105-H002 – FANUC Robotics R-2000iA Servo Amplifier product page to get the best deals.

Fanuc 911 RAM PARITY ERROR Troubleshooting

Fanuc 911 Error

Fanuc 911 RAM PARITY ERROR Troubleshooting

MRO Electric and Supply maintains a comprehensive stock of new and used FANUC CNC and FANUC Robots parts. If you need a FANUC replacement part, please call 800-691-8511 or email sales@mroelectric.com.

Last week we had a customer who was running an RNC 16 STAR 1990 vintage machine which failed so he decided to replace the main A16B-1010-0280 motherboard. His original problem was that he was receiving a 401 [VRDY Off] Error which then led to a 911 Error. When he replaced the A16B-1010-0280 motherboard, the machine would go directly to the 911 Error.

The first thing we checked for was to make sure that he transferred over all of the EEPROM modules from his original board to the replacement board, which he did. Since that wasn’t the issue, we double checked on the 911 Error, which shows as a RAM PARITY ERROR in the manual. The main cause of this error is an issue with the memory in the unit, which is caused by the memory board failing or losing the parameters in the system.

To check to see if the memory board was causing it or not, you can turn the control off, reset it, and delete the parameters. If this clears the alarm, the control would come up with a different series of servo alarms meaning that the parameters need to be reloaded. If the Fanuc 911 Error comes back it would mean that there is a problem with the memory board which needs to be replaced. Before trying any of this, be sure to confirm that you have all of the parameters saved so you can load them back in. Check out our article on IT and Robotics here.

Once the 911 Error was cleared, the customer was able to load the parameters back on to get the machine up and running.