Distributed Control System (DCS) Explained

A Distributed Control System (DCS) is a type of automated industrial control system (ICS) used to control geographically distributed processes, such as those in factories, power plants, and other large industrial settings. DCS systems rely on a network of controllers distributed across a facility, allowing for real-time monitoring and control of multiple processes simultaneously. These systems are integral in industries where precise, continuous control is essential. Read on to learn more about the meaning of DCS.

What is a DCS?

A Distributed Control System (DCS) is a computerized control system that streamlines the functionalities of industrial devices used throughout a workspace. A DCS utilizes a wide range of controllers to permit all the parts to converse with one another just as PCs do. These controllers are distributed geographically across a plant to allow for high-speed communication to the control process. When utilizing various kinds of modules, the framework may require diverse correspondence norms, for example, Modbus and Profibus.

What is a Distributed Control System
Distributed Control System Layout
Read More

Digitalizing Automation For the Future

A Brief History

For the longest time, automation has always been the end-goal process when it comes to industrialization. That is that the user can quickly and efficiently complete a process repeatedly. Whether that process involves production or maintenance, the last two decades have seen a monumental rise in digitalization across numerous industries. Of course, digitalization is not a stranger to the world of automation machinery (and it would be incorrect to conflate that one is the opposite of the other). As it stands, all of the major industrial companies have some form of proprietary software that they use to automate their machinery and it’s been that way for several decades. However, in research done by Forrester, 77% of businesses today still rely on a paper process, with only 63% still using spreadsheet programs. Ultimately, this makes it more difficult to keep up with customer demands, and really wanting for a more streamlined process.

Automation and Digitalization

What is Automation?

Automation physically performs a process without the constant need of a human operator. Its tasks are dedicated by a group of rules preset by an operator usually in the form of either script commands or more robust software pending on what the task is.

What is Digitalization?

Digitalization is basically the process of taking a hard copy of something and converting it into a digital format. This could be anything from a worded manual or even a photo. Digitalizing is crucial to automation because it is how an automated process interprets data to commit to a function. The last few decades have seen a progression in the control of industrial automation from manual to digital.

The Possibilities

One example of how digitalization can streamline automation is through the way tasks and functions are being given to a piece of industrial equipment. For the longest time, equipment like automoted robots in manufacturing have been relying on external devices like PLCs (Programmable Logic Controllers) to output individual commands. These are all multiple components linked together on a bus and then connected to the drive and other components. This is the current setup for a lot of industrial and manufacturing operations.

While this setup does get the job done, it does present a few issues.

For starters, communication is one of the most important things when automizing. When multiple components come into play, there is always the chance of communication issues between devices. This can be attributed to various issues, like conflicting software between the devices or even simply how something is connected. There is also the issue of troubleshooting and trying to figure out the cause of an existing issue. With digitalization, instead of having a bunch of devices trying to talk to one another, there can be just one fully-integrated device using a single software. Having instant diagnostics would also cut down on troubleshooting time.

A Little Thing Called BIM

One piece of digitalization that could potentially change the way automation works is actually a technology that is becoming more prominent in the field of architecture and engineering called BIM (Building Information Modeling). What is BIM? In short, BIM is a digitalized way to create and manage data in the design, construction, and operation of products. Often it is used by architects, engineers, and construction working on sophisticated buildings. It allows for multiple teams to collaborate in real-time as they are working on a project. The same technology could virtually model the layout of a factory and could share accurate data in real-time across multiple teams.

Imagine an entire manufacturing setup being represented by a virtual model that is constantly sharing diagnostics of the equipment. If something were to break down or get faulty, the diagnostic could alert the technician, and using the virtual model, they can get a better visual representation of what is causing the issue and where it can be found. Simultaneously an alert can be sent out across different departments so that different teams can quickly communicate and come up with solutions to the problem. This in turn saves time on labor and the cost of troubleshooting.

Final Thoughts

Automation has always been and continues to be the end goal for many companies across multiple industries. With digitalization allowing for the process to function more autonomous than ever, it seems we are moving further along into a world of unfettered interconnectivity. As the digitalization of automation continues to progress, the acknowledgment of anxiety over its effects on human employees cannot be ignored. If everything is fully automated and more streamlined, what place does the employee have?

One issue that we need to consider is how automation will affect socioeconomics. From an optimistic point of view, one could argue that the present automation has already done away with a lot of the ‘human element’, and the margins of laying off workers would be small, especially when a company could train up employees to learn the technology.

On the other hand, we’re talking about a situation where only a handful of positions are available. Often, a company would rather onboard someone who already has experience rather than train an existing employee. Automation could pessimistically mean that both low-skilled and specialized employees both have a hard time finding work. On one end when most of the general tasks can be automated why would a company need to hire humans? Not to mention that exists a ceiling with just how many specialized jobs exist versus how many specialized employees compete to fill those seats. This is an existing issue we can see across multiple tech sector positions today.

What the solution is, remains to be seen. While the advancement of automation is crucial to productivity, it is something that should be treated cautiously in regards to how it affects the working person.

Benefits of Artificial Intelligence in Manufacturing Businesses

Picture via Unsplash

Artificial intelligence (AI) has been a great benefit to industries across the board, but its role in the manufacturing industry has grown exponentially in the past few years. From predictive machine maintenance to improved supply chain communication, read below for some ways that AI benefits manufacturing businesses.

Supply chain communication

There are a lot of moving parts when it comes to manufacturing, and AI can help streamline communication throughout the supply chain. According to LiveMint’s report on supply chain modernization, companies who work with delivery partners can leverage AI to provide timely feedback and dynamic pricing to their customers. This communication doesn’t stop with delivery companies, either. With manufacturing companies often offshoring production to different parts of the globe, time is of the essence when it comes to stocking products and making them ready for delivery. Such communication is crucial in today’s health crisis, where companies with global operations are scrambling to consolidate tasks and remain in business.

Read More
A PLC installed alongside other components

What Is a PLC (Programmable Logic Controller)?

What Does “PLC” Stand For?

A Programmable Logic Controller, abbreviated as “PLC” is a computer used to address the issues of a particular assembling process. These devices come in a wide range of shapes and sizes, with numerous alternatives for computerized and simple I/O, as well as protection from high temperatures, vibration, and electrical noise. The invention of the PLC allows for computers to be streamlined into the industrial automation process.

A PLC can be a solitary device figuring and executing operations, or a rack of various modules utilized to meet whatever your automation system requires. A portion of the extra parts include processors, power supplies, additional IO, interfaces, and more. Each part cooperates to have the option to run open or shut circle activities that are appraised at fast and high accuracy. Take a CNC machine for instance; a PLC would be utilized to control positioning, motion, and torque control. These devices are popular since they are inexpensive in relation to the amount of power and lifespan they possess. PLCs can run for hours on end. 

Read More

Control Techniques Manufacturer Showcase

Established in 1972 in Newtown, Wales, this industrial part manufacturer owned by the Nidec Corporation continues to provide high quality AC Drives and motor control management products today. In this post, we will be showcasing some of the classes and parts Control Techniques has to offer.

Unidrive
The Unidrive line of products from Control Techniques includes devices like brushless AC servo motors. The Unidrive Classic series drives are available in five different sizes and twenty-six different models, allowing you to fit one of these devices in almost any existing automation system. This series of drives have enough built in parameters to meet most task demands.

UNI2403 by Control Techniques

The Unidrive Classic series offers complete I/O configurability, advanced position control, programmable logic functions, regeneration mode for four-quadrant operations, high speed communications for quick feedback, preset macros for simplified operations and more.

Focus DC
The Focus DC line of products are solid state analog DC drives built to last reliably in almost all environments. This family has regenerative models and different enclosure kits available to offer a wide range of custom configurations. Optional kits for these drives include ones that offer toggle switches, signal isolation, M contactor kits, dynamic braking and tachometer feedback modules.

Commander SE
The Commander SE line of products offer flexibility in many automated systems by being the top choice for microdrives. They are built to be rugged machines that can stay physically stable and constantly sit at correct temperatures. These devices are shipped with shipped with firmware that makes first time setup and installation as easy as possible, including the parameters that immediately meet the needs of most drive applications.

Commander SE products by Control Techniques

The Commander SE series offers full control of all levels of parameters, visualization of terminal connections, multiple motor speed preset settings, open loop vector control, fully configurable analog/digital Input/Output settings, sequenced switching between multiple parameters and communications via DeviceNet, PROFIBUS DP and Interbus S.

Unidrive SP
The Unidrive SP series comes in both free-standing and modular forms. The SP modular offers all the benefits of the normal Unidrive SP system along with more intense system power configurations. It is easily able to be connected together to create almost any custom setup necessary. Parallel drives are used together for higher powered motors. These drives are built to last and are flexible.

Some additional modules include SPMA AC in / DC out Drive, SPMC AC in / DC out Rectifier, SPMD DC in / AC out Inverter, SM Control MASTER, SM Control SLAVE, SPM Power Selector.

MRO Electric and Supply offers a variety of new and refurbished Control Techniques devices. We also offer repair pricing. For more information, please call 800-691-8511 or email sales@mroelectric.com.

Factory Automation and Machine-to-Machine (M2M) Advances

fanuc robotics

 Factory Automation and Machine-to-Machine (M2M) Advances

As technology evolves, automation has become more and more prevalent in the factory automation space. Machine-to-machine enables private and exclusive communication and control over sensors, cameras, industrial equipment, robotics (check out our FANUC Robotics parts) and essentially anything else. Manufactory facilities and several other remote systems are managed much more easily with machine-to-machine advances in communication.

Initially, with industrial and enterprise applications as a focal point, machine-to-machine communication was easily defined and used for a limited amount of tasks. Nowadays, there are many fewer limitations associated with the machine-to-machine communication.

Pressured to lower costs and improve speed and overall efficiency, factory automation companies are often in an uncomfortable spot. While using high-end, sophisticated automation applications and tools, more real-time data must be obtained to streamline more of the day-to-day operations and tasks. Implementing machine-to-machine solutions can help with operational efficiency gains, time and cost savings, and performance optimization.

From a cellular standpoint, machine-to-machine solutions enable integration of environmental controls into a single system, and to unify with security and video surveillance systems. All and all, companies are able to secure several properties from anywhere they wish to, even as they fine-tune power efficiency and decrease operating expenses.

Due to the immense increase of machine-operated plants in companies who rely on keeping critical assets and functions performing optimally, several companies are exploring options associated with a machine-to-machine communication. Of the many benefits, the fact that it’s able to deliver remote access to gather real-time process data to cut operation costs is often one of the most well-recognized. The ability to identify and rectify production line faults, or design and implement preventative maintenance strategies, for example, is what machine-to-machine communication is designed for.

Involving data exchange over the telephone line or via the internal with machines, plants, computers for issue detection, diagnostics, and repair, teleservice is an imperative aspect of machine-to-machine communication. Offering an optimal answer to diagnose distant systems, teleservice is becoming more and more popular and is not going anywhere.

Telecontrol, another aspect of machine-to-machine communication, deals with connections of distant process stations to one or more central control systems. Many networks, both public and private,  can be used for communication used to control. For these diverse applications and businesses, cellular M2M connectivity can address many business and technical challenges and enable important benefits.

MRO Electric and Supply has new and refurbished FANUC parts available. We also offer repair pricing. For more information, please call 800-691-8511 or email sales@mroelectric.com.

Additionally, M2M systems can be designed to withstand harsh environmental conditions and easily manage and control connected devices across the country or around the world. M2M systems provide flexibility to move equipment as needed, or bring up and tear down systems quickly for temporary or seasonal deployments. By using modern M2M management and application platforms, and taking care to choose platforms designed to meet real-world requirements, organizations can take full advantage of the M2M revolution.

In case you were wondering, machine-to-machine systems are indeed designed to withstand environmental conditions and easily control connected devices in any location. They are flexible and can move equipment with ease. In order to use machine-to-machine communication optimally, look into management and application platforms. Click here to view our article on IT and Robotics.

Boosting Factory Automation Productivity

Boosting Factory Automation Productivity

In the factory automation space, productivity is much more than an imperative management concept; it is a scalable tool that drives employees and processes to be functioning at their best. In order to keep employees on track and enable goals to be met in the workplace, fine-tuning processes and running a ‘tight ship’ as far as time management is concerned is considered best practice.

As far as work is concerned, understanding where to start is the first, and often, most difficult step. Understand what may set your company back, whether it be a worn down motor (such as a FANUC CNC Motor) not performing up-to-par, or a poorly-maintained Servo Amp (such as a FANUC CNC Servo Amp).  Missing expectations due to a faulty machine is avoidable, as seen in this article focusing on Maintaining Automation Machine Tools.

To ensure your teams’ insights aren’t hindered, consider documenting priority-oriented processes such as customer service, client retention, and cutting operation costs, that way, more focus can be put toward improving workflow, coaching employees and pinpointing other areas that could be improved on. Take industry benchmarks into consideration; they can be used as a point of reference to determine if an area can be improved in, or if it’s already up-to-par. Along with documenting the aforementioned processes, keeping track of progress and growth can also aid in fine-tuning.

In order to remain on the same page with employees, ask for their buy-in and try to understand where they’re coming from. They may help shed light on problematic areas such as why certain departments aren’t working as closely together as they could be, or if downtime could be minimized by having two departments working together more effectively. By making employees feel valued and trusted, a company is less likely to run into honesty issues, communication issues and/or issues with collaboration. The foundation for productive operations starts with an honest, well-communicating team. Teams need to have an in-depth understanding of where they’re expected to add value and, of course, what the company is working toward as a whole. Eliminating clutter in order to have a well-focused and productive team is an achievement that most of those in the factory machine automation space don’t lose sight of. MRO Electric and Supply has new and refurbished FANUC CNC parts available. We also offer repair pricing. For more information, please call 800-691-8511 or email sales@mroelectric.com.

These days, there are shortcuts and tools for essentially any and every niche. Many of those in the machine and factory automation space are focusing on robotics (see FANUC Robotics parts) to explore ways to automate processes in hope of enhancing productivity. Be sure to stay ‘in the loop’ when it comes to tools that could enhance one’s productivity through collaboration, etc.