For someone who is new to servo mechanisms and configurations, the features of the servo motor may seem a little daunting. Even after years of experience, I still get a moment of nervous anticipation when I press the START button. Anything that can go wrong, will occasionally go wrong. Becoming familiar with the servo system alleviates the unknown and reduces obstacles to a stable, steady-running servo system.
Servo? Servo Mechanism? Servo control system?
When first becoming acquainted with servo systems, you see these three terms and wonder, “What’s the difference?” These terms are interchangeable and simply refer to a control mechanism that monitors physical quantities. These qualities could refer to speed, torque, position, and such. The word servo comes from the Latin word for servant, and that is precisely the function of the servo. It takes on the appointed tasks assigned by the programmer and faithfully carries out instructions with precision.
According to Japanese Industrial Standard (JIS) terminology, a “servo mechanism” is defined as a mechanism that uses the position, direction, or orientation of an object as a process variable to control a system to follow any changed in a target value (set point). More simply, a servo mechanism is a control mechanism that monitors physical quantities such as specified positions. Feedback control is normally performed by a servo mechanism.
Soure: JIS B0181
There are two ways to help define a servo system. It is a mechanism that first moves at a specified speed and second it locates an object in a specified position. For the servo system to function, an automatic control system must be designed using feedback control, or a control that returns process variables to the input side and forms a closed loop. How does feedback control operate? It controls the output data to match the input data by detecting the machine position (output data) and feeding the data back to the input. The system then compares it with the specified position (input data) which accordingly moves the machine by the difference between the compared data. For example, let’s say your specified position changes. The servo system will recognize the position change and will change accordingly. In this example, the servo system reflected the changes identified by the specified position being altered. The input data is the position in this example, but input data determines other input as well. It may be identifying any physical change such as orientation (angle) water pressure, or voltage. Some other values typically used as control values include position speed, force, electric current, to name a few.
Read MoreUpdated on December 12, 2023 by Joe Kaminski